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Overview

 ENEA Optima and OSE Introduction

* Advanced Event Action System

* Report Profiling — A flexible profiling system

* Taking the Event and Profiling System to Linux



What the heck is OSE?

* Operating System
* Real-time Operating System
* Message Passing Real-time Operating System

* Distributed Message Passing Real-time Operating
System

* Fault handling Distributed Message Passing Real-time
Operating System

* Multicore Fault handling Distributed Message Passing
Real-time Operating System!



OSE

* Light weight processes with resource tracking

« Simple and Powerful Signal APl (messages)
— Hunt, attach, alloc, send, receive, and free_buf
— Signals are asynchronically

— All messages can, if wanted, be received and handled
from any place

* Built in supervision of peers (attach)

* Programs with optional memory protection
* Forward error recovery mechanism built in
* Micro kernel approach (but not too “micro”)



Optima

* Eclipse based tool suite for OSE, OSEck, and Linux
(soon)

— Application and system development tools (typical
IDE functionality)

— System browser

— Profiling and analyse tools

— Tracing and Event Action tools
— Post mortem tools

— Multicore support

— Flexible target connection
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Optima System Browser
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Optima Architecture
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Advanced Event Action System

* Decoupling of events and actions

* Actionpoints defines rules that couple an event to a particular
action

* An actionpoint contains event conditions for whenever it
should be trigged or not

* Actionpoints is associated with a state

* Actionpoint rules are only evaluated when activated and the
event is from a relevant process (a process scope)

* Because of above the event system has a very low
intrusiveness when not used



Events

* Events are send, receive, create, kill, swap, error, bind, user
events
* Events have meta data about
— OS time stamp
— Real calendar time (optional)
— Process causing event
— Additional event type specific information
* Event data such as signal data or text from application
* Trace data can be uploaded and displayed in Optima

* In Optima trace data can be saved in text files (XML) for
further processing



Actions

* Decoupling of events and actions
* Actionpoints defines rules that couple an event to a particular
action

* Actions are trace, notify, intercept, enable trace, disable
trace, set state, undo event, user action



User Events

* Applications can report events with or without data (of
variable size)

* An unique identifier describes the event type (similar to OSE
signal numbers)

* The event data is described with a C-struct (could be the
applications native data structure)

* A simple API with only two functions implemented by the OS
* Almost non intrusive when not used

* Application events coordinated with system events in the
same trace

* Optima can automatically view the event data with symbolic
information (based on the SigDB tool)
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User Event Use Cases

* Used to implement tracing of CRT calls in OSE

— Each CRT function has unique event numbers for function entry
and exit

— Functions with significant data has an event number for the
payload

— File system accesses can be traced from the application level,
through signal transaction, and down to the device driver

— For example heap calls malloc() and free() are instrumented
with user events allowing you to trace heap misuse

* Any application warnings or logging needs you can think of!



Event Tracing

* Log OSE system events or application events

* Filter which event to trace (events, processes involved, etc)
* All events have meta data about time and current process

* Event data such as signal data or free text from application
* Trace data can be saved in text files for further processing
* Trace data uploaded and displayed in Eclipse tools



Event Breakpoints

* Stop application on specified system or application events
* Select which applications/processes to stop
* Show data about the event in Eclipse tools
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Report Profiling - A flexible
profiling system



Report Profiling

* Reports contains information about usage over time
* A report contains statistic for a configurable integration period

* Values represented as signed integers, suitable for percent
and amount

* The data can be one or two dimensional

* Reports are generated periodically by the OS and stored in a
circular buffer (of a dynamic configurable size)

* Clients (host or target based) read continually and receives
chunks of reports in an efficient way

* Open and documented client API for configuring and reading
reports
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Report Profiling

* Different types of Report Profiling

— CPU usage per
* CPU (per core in SMP systems)
* Process priority (interrupt, 0-31, and background)
* Process (thread) (configurable max number per report)
* Program

— Heap usage per:
* Process (configurable max number)

— top users
— User defined (OS provided API)



CPU Report Profiling

* CPU Usage per core (in SMP systems)
* CPU Usage per priority level, including interrupt level

* CPU Usage per process

— top users

— specified ID

— specified name

- system processes shown as sum
* Resolution only limited by hardware clock

* Two measurement principles interrupt sampled or recording
context switches

« Statistics can be saved in text files for further processing
* Statistics presented in graphs in Eclipse tools
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User Report Profiling

Measuring type identifier is allocated by user
Almost zero intrusiveness when not used
Single value or value per object (two dimensional)

Optionally the maximum and minimum value per interval can
be collected

Simple API provided by the OS, only two functions:

ose create report( SI GSELECT reportno, OSADDRESS *tri g,
OSBOOLEAN nul ti pl e, OSBOCOLEAN
conti nuous, OSBOOLEAN
maxni n) ;
ose_set _report _val (SI GSELECT reportno, OSREPCRTID i d,
OSREPORTVAL change) ;
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User Report Use Cases

* Measure
— Network I/O bandwidth utilization
— Different types of memory consumption
— File system utilization
— Hardware registers
* Collect statistics from hardware counters
* Hardware automatically read when integration period ends
— Any resource statistic or application numbers you can think of!

* Load balancing applications can use this for distributing jobs in
a cluster

* Using Optima tools for pinpointing bottlenecks and
optimization opportunities

* Visualize what is going on in my complex distributed system
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Taking the Event and Profiling
System to Linux

* LINX - The Signal and Link handler concept for OSE, OSEcKk,
and LINUX!

— Now is the simple and powerful signal API available for Linux
including the hunt, attach, send, and receive functionality

— Tightly integrated in the Linux kernel
— Open and available to all from Sourceforge
— The right OS for the right task and they can all talk to each other
* Next step is to bring the advanced event action system and
report profiling to Linux
— Integrate the Event system with LINX and the Linux kernel
— Provide the user report profiling API for Linux

* Linux developers will benefit from powerful system tools
previously only available for OSE!



ENEA

Questions?

sven.lundblad@enea.se



