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Overview

• ENEA Optima and OSE Introduction
• Advanced Event Action System
• Report Profiling – A flexible profiling system
• Taking the Event and Profiling System to Linux



What the heck is OSE?

• Operating System
• Real-time Operating System
• Message Passing Real-time Operating System
• Distributed Message Passing Real-time Operating 

System
• Fault handling Distributed Message Passing Real-time 

Operating System
• Multicore Fault handling Distributed Message Passing 

Real-time Operating System!



OSE

• Light weight processes with resource tracking
• Simple and Powerful Signal API (messages)

– Hunt, attach, alloc, send, receive, and free_buf
– Signals are asynchronically
– All messages can, if wanted, be received and handled 

from any place
• Built in supervision of peers (attach)
• Programs with optional memory protection
• Forward error recovery mechanism built in
• Micro kernel approach (but not too “micro”)



Optima
• Eclipse based tool suite for OSE, OSEck, and Linux 

(soon)
– Application and system development tools (typical 

IDE functionality)
– System browser
– Profiling and analyse tools
– Tracing and Event Action tools
– Post mortem tools
– Multicore support
– Flexible target connection
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Optima Architecture
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Optima Architecture
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Advanced Event Action System
• Decoupling of events and actions
• Actionpoints defines rules that couple an event to a particular 

action
• An actionpoint contains event conditions for whenever it 

should be trigged or not

• Actionpoints is associated with a state

• Actionpoint rules are only evaluated when activated and the 
event is from a relevant process (a process scope)

• Because of above the event system has a very low 
intrusiveness when not used



Events
• Events are send, receive, create, kill, swap, error, bind, user 

events
• Events have meta data about

– OS time stamp
– Real calendar time (optional)
– Process causing event
– Additional event type specific information

• Event data such as signal data or text from application
• Trace data can be uploaded and displayed in Optima
• In Optima trace data can be saved in text files (XML) for 

further processing



Actions
• Decoupling of events and actions
• Actionpoints defines rules that couple an event to a particular 

action
• Actions are trace, notify, intercept, enable trace, disable 

trace, set state, undo event, user action



User Events
• Applications can report events with or without data (of 

variable size)
• An unique identifier describes the event type (similar to OSE 

signal numbers)
• The event data is described with a C-struct (could be the 

applications native data structure)

• A simple API with only two functions implemented by the OS

• Almost non intrusive when not used
• Application events coordinated with system events in the 

same trace
• Optima can automatically view the event data with symbolic 

information (based on the SigDB tool)



User Event Use Cases
• Used to implement tracing of CRT calls in OSE

– Each CRT function has unique event numbers for function entry 
and exit

– Functions with significant data has an event number for the 
payload

– File system accesses can be traced from the application level, 
through signal transaction, and down to the device driver

– For example heap calls malloc() and free() are instrumented 
with user events allowing you to trace heap misuse

• Any application warnings or logging needs you can think of!



Event Tracing
• Log OSE system events or application events
• Filter which event to trace (events, processes involved, etc)
• All events have meta data about time and current process

• Event data such as signal data or free text from application

• Trace data can be saved in text files for further processing
• Trace data uploaded and displayed in Eclipse tools



Event Breakpoints
• Stop application on specified system or application events
• Select which applications/processes to stop
• Show data about the event in Eclipse tools





Are you still awake?



Report Profiling – A flexible 
profiling system



Report Profiling

• Reports contains information about usage over time
• A report contains statistic for a configurable integration period
• Values represented as signed integers, suitable for percent 

and amount
• The data can be one or two dimensional

• Reports are generated periodically by the OS and stored in a 
circular buffer (of a dynamic configurable size)

• Clients (host or target based) read continually and receives 
chunks of reports in an efficient way

• Open and documented client API for configuring and reading 
reports



Report Profiling

• Different types of Report Profiling
– CPU usage per

• CPU (per core in SMP systems)
• Process priority (interrupt, 0-31, and background)
• Process (thread) (configurable max number per report)
• Program

– Heap usage per:
• Process (configurable max number)

– top users
– User defined (OS provided API)



CPU Report Profiling
• CPU Usage per core (in SMP systems)
• CPU Usage per priority level, including interrupt level
• CPU Usage per process

– top users
– specified ID
– specified name
– system processes shown as sum

• Resolution only limited by hardware clock
• Two measurement principles interrupt sampled or recording 

context switches

• Statistics can be saved in text files for further processing

• Statistics presented in graphs in Eclipse tools



User Report Profiling

• Measuring type identifier is allocated by user
• Almost zero intrusiveness when not used
• Single value or value per object (two dimensional)
• Optionally the maximum and minimum value per interval can 

be collected

• Simple API provided by the OS, only two functions:
� ose_create_report( SIGSELECT reportno, OSADDRESS *trig, 

OSBOOLEAN multiple, OSBOOLEAN        
          continuous, OSBOOLEAN 

maxmin); 
� ose_set_report_val(SIGSELECT reportno, OSREPORTID id, 

OSREPORTVAL change);



User Report Use Cases

• Measure
– Network I/O bandwidth utilization
– Different types of memory consumption
– File system utilization
– Hardware registers

• Collect statistics from hardware counters
• Hardware automatically read when integration period ends

– Any resource statistic or application numbers you can think of!

• Load balancing applications can use this for distributing jobs in 
a cluster

• Using Optima tools for pinpointing bottlenecks and 
optimization opportunities

• Visualize what is going on in my complex distributed system





Taking the Event and Profiling 
System to Linux

• LINX – The Signal and Link handler concept for OSE, OSEck, 
and LINUX!

– Now is the simple and powerful signal API available for Linux 
including the hunt, attach, send, and receive functionality

– Tightly integrated in the Linux kernel
– Open and available to all from Sourceforge
– The right OS for the right task and they can all talk to each other

• Next step is to bring the advanced event action system and 
report profiling to Linux

– Integrate the Event system with LINX and the Linux kernel
– Provide the user report profiling API for Linux

• Linux developers will benefit from powerful system tools 
previously only available for OSE!



Questions?
sven.lundblad@enea.se


