ENEA

Advanced Event Action System and
Flexible Profiling

Sven.Lundblad@enea.com

Overview

 ENEA Optima and OSE Introduction

* Advanced Event Action System

* Report Profiling — A flexible profiling system

* Taking the Event and Profiling System to Linux

What the heck is OSE?

* Operating System
* Real-time Operating System
* Message Passing Real-time Operating System

* Distributed Message Passing Real-time Operating
System

* Fault handling Distributed Message Passing Real-time
Operating System

* Multicore Fault handling Distributed Message Passing
Real-time Operating System!

OSE

* Light weight processes with resource tracking

« Simple and Powerful Signal APl (messages)
— Hunt, attach, alloc, send, receive, and free_buf
— Signals are asynchronically

— All messages can, if wanted, be received and handled
from any place

* Built in supervision of peers (attach)

* Programs with optional memory protection
* Forward error recovery mechanism built in
* Micro kernel approach (but not too “micro”)

Optima

* Eclipse based tool suite for OSE, OSEck, and Linux
(soon)

— Application and system development tools (typical
IDE functionality)

— System browser

— Profiling and analyse tools

— Tracing and Event Action tools
— Post mortem tools

— Multicore support

— Flexible target connection

Embedded for leaders

Optima System Browser

Hierarchical view

— Editor

(System model) i -
(Context menus) = Resource - ose_monitor {Dx10007) - Eclipse Platform navigation
Edit Refactor Mawigate Search Project Run Window Hel Back / Forward
| - |- |+ | 1 | [Resource
Gateway = ﬁ(/ . p— ==
@ 0OSE Svstem Browser 53 _&ln (0310003 (' ose_monitor (0x10007) 55w
e - | RO B = - T~
e R | RY e E ose_monitor ~_
(-4 sfkwin32 172,16,140,77: 21768 = Details editors
E;é;j Fl-winaz 172.16.140.7:2 1768 Process Information Signal Select Signal Queue (System model)
Target ‘A sfk-linux 172.16,230,20: 21768 (Double CliCk)
> B 172.16.230.20:21768 Killed: Mo value | Sig Mo |
Block paal {0 10000; Mame: ose_monikar
oc main (0x10008) Pracess ID; 010007
o RS (0x10001] Black ID: 0x10001
@ \ose_monitor (010007 oo : L Table data
P e [\ose huntd (010006 User Murbet: 1] .
rocesses ¥ = Tvme: F— views (Block)
I se_huntd (0x10005) Vpe: FIaritiZe P
Type and stat > D‘E-:?" se_tickd (0x10004) State: Runninig (Process)
€ 1. = o T -
g ; se_sysd (0x10003) i:'ru:urltv. 1 _|_I _On target filter
A fidle (0100023 || . r|_~ .
decorations) =~ | (All properties)
QSE Load Madul (OsE Block List (' 015E Process List &3 (I ’; &
" . NS
Load modules T;rgEt' 172.16.230.20:217 ’I D | s | User [T lTstat IFECIETRs } Sortable
. ame ser | Tvpe ake riority | Sigs in g = .

J| (All properti
view (COlltEXt FaM_COMMoN_SENDER. 0x10019 010005 0 Phanktom Ready 0 e (prope t ES)
menu) Care_suUperyisor O 10008 D 10005 0 Prioritized Receive 15

echo 0x1002F 010008 0 Priotitized Receive 7

mM&in Q10009 Q10005 0 Priotitized Receive 16
netw_supervisar 0x10023 0x10005 0 | Prioritized Receive 15 _ILI
1| | v

Embedded for leaders

Optima System Browser

CDT —_ al:,.-“l:++ hello.c - Eclipse Platform O] =|
editor/views\ Mavigate Search Project Run window Help CDT
\LL: i | fEcic++ ” | Relaunch/debug
| meine & OSE System Browser 23 = 5| = 5|
W - | R s #include "stdio.h” N|
\El Hj 172.16.140.105:21 768 J) o
g ponl (0510000 _| int mainiint arec, char *%*arogv)
Obperations - gF main {0 10008) {
p N : p‘.’? ose_kools_monitor_client (0x 1003 princf("Hello World!'"™);
(Context) i ose_tools_sender_proxy (0x3003 E
(Contributions) \ O

O\ s
L AN aca coefard hd
il \ Lﬁi Find Gates —'I_I

P

- * ?Qs
HE] C/C++ Projects 53 Y add Gate, . lems &3 . Consale | Properties)™ = ¥ =0
CDT g =+l
i 5, 0 warnings,

Platform views

o

Integration . - Open < cription | Resource | In Folder
(Launch - helo
Configuration) NG g Tncludes Show in O5E Process List

X < . hella.c
(Two click load Sl
and launch OSE | . S_t':'p
programs) ki

Debug. ..

Optima and OSE5

Eclipse Tools

Runtime Linked
Method Calls

Runtime Linked
Method Calls

Host

Soure Debug
Tool(s)

System Debug
Tool(s)

Stdin / Stdout

Gateway Client

GNU Debugger

Gateway Client

(Monitor Protocol, etc)

TCP

/IP

Embedded for leaders

Executive

Executive Freeze
Mode Interface

Function
Calls

Function
Calls

Run Mode Monitor

Signals

Gateway

Target

Memory Manager

Function
Calls

Execution Point

Signals

Program Manager

Embedded for leaders

Optima Architecture

com.ose.system.ui...

A

get()

A 4

update()

Worke Ul

rogress() event(

e

com.ose.system

| ‘.

com.ose.system.servic

e.monitor
Receive@

com.ose.system.servi

ce.pm
Receive@

!

Receive@

com.ose.gateway

com.ose.gateway

com.ose.gateway

com.ose.gateway

lequest()

reply()I Inotify()

Optima Architecture

A

y

com.ose.system.ui...View

=

A

y

event()[

Embedded for leaders

com.ose.system.ui...Model

4

get()
Worke

A 4

update()

rogress() event()

A

N

com.ose.system

Advanced Event Action System

* Decoupling of events and actions

* Actionpoints defines rules that couple an event to a particular
action

* An actionpoint contains event conditions for whenever it
should be trigged or not

* Actionpoints is associated with a state

* Actionpoint rules are only evaluated when activated and the
event is from a relevant process (a process scope)

* Because of above the event system has a very low
intrusiveness when not used

Events

* Events are send, receive, create, kill, swap, error, bind, user
events
* Events have meta data about
— OS time stamp
— Real calendar time (optional)
— Process causing event
— Additional event type specific information
* Event data such as signal data or text from application
* Trace data can be uploaded and displayed in Optima

* In Optima trace data can be saved in text files (XML) for
further processing

Actions

* Decoupling of events and actions
* Actionpoints defines rules that couple an event to a particular
action

* Actions are trace, notify, intercept, enable trace, disable
trace, set state, undo event, user action

User Events

* Applications can report events with or without data (of
variable size)

* An unique identifier describes the event type (similar to OSE
signal numbers)

* The event data is described with a C-struct (could be the
applications native data structure)

* A simple API with only two functions implemented by the OS
* Almost non intrusive when not used

* Application events coordinated with system events in the
same trace

* Optima can automatically view the event data with symbolic
information (based on the SigDB tool)

Embedded for leaders

User Event Use Cases

* Used to implement tracing of CRT calls in OSE

— Each CRT function has unique event numbers for function entry
and exit

— Functions with significant data has an event number for the
payload

— File system accesses can be traced from the application level,
through signal transaction, and down to the device driver

— For example heap calls malloc() and free() are instrumented
with user events allowing you to trace heap misuse

* Any application warnings or logging needs you can think of!

Event Tracing

* Log OSE system events or application events

* Filter which event to trace (events, processes involved, etc)
* All events have meta data about time and current process

* Event data such as signal data or free text from application
* Trace data can be saved in text files for further processing
* Trace data uploaded and displayed in Eclipse tools

Event Breakpoints

* Stop application on specified system or application events
* Select which applications/processes to stop
* Show data about the event in Eclipse tools

Embedded for leaders

| & OSE System Browsing - Events - Eclipse Platform - |EI|£|
| File Edit Mavigate Search Project Run Window Help
| il @ [-0 - Q- | |- il | @ OSE SystemB... 7
@ ©O5E System Browser 53 = 0| @ Events 2 =08
|| Target: nameless {172.25.2.19:21768,, Scope: Block Ox 10033, Event Ackions: eventaction-trace, xml, Events; 135
Qéh - ¥ - | LE{ i £h | Mo | Enfkr | Tick. | Timestamp | Ewent | From : | To :I
115 1119370:29 Jan 1, 1970 1:00:00 &AM O us |dser debugping:dots {0x 10038}
— 116 1119370:39 Jan 1, 1970 1:00:00 AM O ps Swap debugping:dats {0x10038) OSE:idle (0x10002)
=b(¢ 7 117 | 11193758:9 lan 1, 1970 1:00:00 &AM O us Suan O3Eidle (0x10002) debugping: pong (Ox1 0034
= "% nameless (172,25.2.15:21768) 118 11193789 Jan 1, 1970 1:00:00 AM O ps User debugping: pong (Dx10034)
B8 nameless (172.25.2,15:217680) 119 1119378:19 Jan 1, 1970 1:00:00 &M O ps User debugping: pong (Ox 10034)
@ pool (0 10000) 120 11193768:29 Jan 1, 1970 1:00:00 AM O us Send debugping: pong (0 10034) debugping: ping (0x10039)
debugping (0x10038) 121 1119375:48 lan 1, 1970 1:00:00 &AM O us Suan debudgping: pong (Ox 100347 debugping: ping (0x10039)
e gRing 122 1119378:48 Jan 1, 1970 1:00:00 &M O ps Recsive debugping:pong (0x 10034 debugping:ping (0% 10039}
& cplusplus (0100307 123 1119378:68 Jan 1, 1970 1:00:00 &M 0 ps Swap debugping: ping (010033 05Eidle (0x10002)
& dispatch (0x1003C) 124 1119395:9 Jan 1, 1970 1:00:00 &M O ps Swap OSEidle (0x10002) debugping:dots {0x 10038}
@“? dots (0:x10036) 125 1119395:19 Jan 1, 1970 1:00:00 AM O ps User debugping:dats {0x10038)
£ pong [Ox10038) 126 1119395:19 lan 1, 1970 1:00:00 &AM O us |dser debudgping: dats {0x 10038}
E:} i (010039 127 1119395:29 lan 1, 1970 1:00:00 AM O us Suan debugping:dots {0x 10038} Q3E:idle (0x10002)
: an 1, :00: s Lap idle (0x ebugping:dots {0x
o i _p""g(%) 128 11194209 Jan 1, 1970 1:00:00 AM O 5 O5Esidle (0x10002) debugping:dats (0x1003E)
main (010008 129 1119420:9 Jan 1, 1970 1:00:00 AM O ps User debugping:dats (0x10036)
- OSE (0x10001) 130 1119420:19 Jan 1, 1970 1:00:00 AM O ps User debugping:dats {0x10038)
131 1119420:29 lan 1, 1970 1:00:00 &AM O us Suan debugping: dots {0x 10038} Q3E:idle (010002}
132 1119445:9 Jan 1, 1970 1:00:00 AM O us Suap Q3 idle (0x10002) debugping:dots {0x 10038}
133 1119445:9 Jan 1, 1970 1:00:00 &AM O us |Jser debugping:dots (0x 10038}
134 1119445:19 Jan 1, 1970 1:00:00 AM O us |Jser debugping:dots {0x 10038}
135 1119445:29 Jan 1, 1970 1:00:00 AM O ps Swap debugping:dats {0x10038) OSE:idle (0x10002)
-
4| | »
=
-
Kl ¥

Trace | hokify |

Find: |

O3E Load ... ‘ (Q3E Block List | O3E Proces., .. | Properties ‘ Q3E Dumps mctlSE Profiler | Moy ‘ Q3E Pool O, ‘ SE Pool Pr... | =d

C N YRR

e @ w

Timeskamp

J Read

m

ing events From targek

codjeme [[13S hoA aay

Report Profiling - A flexible
profiling system

Report Profiling

* Reports contains information about usage over time
* A report contains statistic for a configurable integration period

* Values represented as signed integers, suitable for percent
and amount

* The data can be one or two dimensional

* Reports are generated periodically by the OS and stored in a
circular buffer (of a dynamic configurable size)

* Clients (host or target based) read continually and receives
chunks of reports in an efficient way

* Open and documented client API for configuring and reading
reports

Embedded for leaders

Report Profiling

* Different types of Report Profiling

— CPU usage per
* CPU (per core in SMP systems)
* Process priority (interrupt, 0-31, and background)
* Process (thread) (configurable max number per report)
* Program

— Heap usage per:
* Process (configurable max number)

— top users
— User defined (OS provided API)

CPU Report Profiling

* CPU Usage per core (in SMP systems)
* CPU Usage per priority level, including interrupt level

* CPU Usage per process

— top users

— specified ID

— specified name

- system processes shown as sum
* Resolution only limited by hardware clock

* Two measurement principles interrupt sampled or recording
context switches

« Statistics can be saved in text files for further processing
* Statistics presented in graphs in Eclipse tools

Embedded for leaders

User Report Profiling

Measuring type identifier is allocated by user
Almost zero intrusiveness when not used
Single value or value per object (two dimensional)

Optionally the maximum and minimum value per interval can
be collected

Simple API provided by the OS, only two functions:

ose create report(SI GSELECT reportno, OSADDRESS *tri g,
OSBOOLEAN nul ti pl e, OSBOCOLEAN
conti nuous, OSBOOLEAN
maxni n) ;
ose_set _report _val (SI GSELECT reportno, OSREPCRTID i d,
OSREPORTVAL change) ;

Embedded for leaders

User Report Use Cases

* Measure
— Network I/O bandwidth utilization
— Different types of memory consumption
— File system utilization
— Hardware registers
* Collect statistics from hardware counters
* Hardware automatically read when integration period ends
— Any resource statistic or application numbers you can think of!

* Load balancing applications can use this for distributing jobs in
a cluster

* Using Optima tools for pinpointing bottlenecks and
optimization opportunities

* Visualize what is going on in my complex distributed system

Embedded for leaders

& 0SE System Browsing - CPU Usage / Process - Ecli 10| x|
File Edit Mavigate Search Project Run Window Help

Jf‘j' | JTOJ%&'@"%-J@"'J*-.'J . -G o - . T | @ OSE SystemB...
=
& osE Syskem Browser &5 = O & Everts = B8
|| Target: nameless {172.25.2.15:21 768/} Profiled Processes: pingdebugprof,xml Reports; 118

o RN R A 42T

42297 ;—;—ﬁf
U nameless (172.25.2.15:21768)
36203

El@ nameless (172,252, 15:21768])

m,\rTﬂ LE

< pool (010000 es
=@ debugping (0x10033)
cplusplus {0x 100300 24135 =
& dispatch (0:1003C) i
A dats (01 0036)
A pong (0:10034) {2067
w8 ping (0x10039) e
B main {01 000
; -
¢ OSE (0x10001) ey
E
Nt = e Ty
e
C’t}—"ﬁ’@‘-_—"gcr
S Er o
S
&
Q‘a“‘ <
KK ™
N
= '\(‘
< o
QP ae o

[Show Relative Values;
Chatt

[Table |

O3E Load ... ‘ O5E Block Lisk | O3E Proces. .. | Properties | 5E Dumps | Q3E Events (' CSE Profiler 23 Memory | O3E Pool O, ‘ SE Pool Pr... | = O

B e ey

Target | Profiling Twpe | Timeskamp
B8 nameless (172,252, 15:21768/) CPU Usage [Process Sep 12, 2007 944516 AM

Find: I

1
-

Embedded for leaders

Taking the Event and Profiling
System to Linux

* LINX - The Signal and Link handler concept for OSE, OSEcKk,
and LINUX!

— Now is the simple and powerful signal API available for Linux
including the hunt, attach, send, and receive functionality

— Tightly integrated in the Linux kernel
— Open and available to all from Sourceforge
— The right OS for the right task and they can all talk to each other
* Next step is to bring the advanced event action system and
report profiling to Linux
— Integrate the Event system with LINX and the Linux kernel
— Provide the user report profiling API for Linux

* Linux developers will benefit from powerful system tools
previously only available for OSE!

ENEA

Questions?

sven.lundblad@enea.se

