
Advanced Event Action System and
Flexible Profiling

Sven.Lundblad@enea.com

Overview

• ENEA Optima and OSE Introduction
• Advanced Event Action System
• Report Profiling – A flexible profiling system
• Taking the Event and Profiling System to Linux

What the heck is OSE?

• Operating System
• Real-time Operating System
• Message Passing Real-time Operating System
• Distributed Message Passing Real-time Operating

System
• Fault handling Distributed Message Passing Real-time

Operating System
• Multicore Fault handling Distributed Message Passing

Real-time Operating System!

OSE

• Light weight processes with resource tracking
• Simple and Powerful Signal API (messages)

– Hunt, attach, alloc, send, receive, and free_buf
– Signals are asynchronically
– All messages can, if wanted, be received and handled

from any place
• Built in supervision of peers (attach)
• Programs with optional memory protection
• Forward error recovery mechanism built in
• Micro kernel approach (but not too “micro”)

Optima
• Eclipse based tool suite for OSE, OSEck, and Linux

(soon)
– Application and system development tools (typical

IDE functionality)
– System browser
– Profiling and analyse tools
– Tracing and Event Action tools
– Post mortem tools
– Multicore support
– Flexible target connection

Optima System Browser
Hierarchical view
(System model)
(Context menus)

Gateway

Target

Block

Processes

Type and state

decorations

Details editors
(System model)
(Double click)

Load modules
view (Context
menu)

Table data
views (Block)
(Process)

On target filter
(All properties)

Sortable
(All properties)

Editor
navigation
Back / Forward

Optima System Browser

Operations
(Context)
(Contributions)

CDT
Integration
(Launch
Configuration)
(Two click load
and launch OSE
programs)

CDT
Relaunch/debug

CDT
editor/views

Platform views

Target

Function
Calls

Host

Gateway Client

GNU Debugger

Eclipse Tools
Framework

Soure Debug
Tool(s)

System Debug
Tool(s)

Gateway Client

Runtime Linked
Method Calls

Runtime Linked
Method Calls

Stdin / Stdout

TCP/IP
(Monitor Protocol, etc)

Signals

Execution Point
Module

Executive Freeze
Mode Interface

Executive

Function
Calls

Persistent Data
Module

Function
Calls

Gateway

Run Mode Monitor

Program Manager

Signals

Function
Calls

Memory Manager

Optima and OSE5

Optima Architecture

com.ose.gateway com.ose.gateway

com.ose.system

com.ose.gateway

com.ose.system.servic
e.monitor

com.ose.system.ui… …

Worker

Receiver

com.ose.system.servi
ce.pm

Receiver

com.ose.gateway

request() reply() notify()

progress()

update()get()

event()

UI

…

…

Receiver

Optima Architecture

com.ose.system

com.ose.system.ui…Model …

Worker

progress()

update()get()

event()

com.ose.system.ui…View

get() event()

UI

…

Advanced Event Action System
• Decoupling of events and actions
• Actionpoints defines rules that couple an event to a particular

action
• An actionpoint contains event conditions for whenever it

should be trigged or not

• Actionpoints is associated with a state

• Actionpoint rules are only evaluated when activated and the
event is from a relevant process (a process scope)

• Because of above the event system has a very low
intrusiveness when not used

Events
• Events are send, receive, create, kill, swap, error, bind, user

events
• Events have meta data about

– OS time stamp
– Real calendar time (optional)
– Process causing event
– Additional event type specific information

• Event data such as signal data or text from application
• Trace data can be uploaded and displayed in Optima
• In Optima trace data can be saved in text files (XML) for

further processing

Actions
• Decoupling of events and actions
• Actionpoints defines rules that couple an event to a particular

action
• Actions are trace, notify, intercept, enable trace, disable

trace, set state, undo event, user action

User Events
• Applications can report events with or without data (of

variable size)
• An unique identifier describes the event type (similar to OSE

signal numbers)
• The event data is described with a C-struct (could be the

applications native data structure)

• A simple API with only two functions implemented by the OS

• Almost non intrusive when not used
• Application events coordinated with system events in the

same trace
• Optima can automatically view the event data with symbolic

information (based on the SigDB tool)

User Event Use Cases
• Used to implement tracing of CRT calls in OSE

– Each CRT function has unique event numbers for function entry
and exit

– Functions with significant data has an event number for the
payload

– File system accesses can be traced from the application level,
through signal transaction, and down to the device driver

– For example heap calls malloc() and free() are instrumented
with user events allowing you to trace heap misuse

• Any application warnings or logging needs you can think of!

Event Tracing
• Log OSE system events or application events
• Filter which event to trace (events, processes involved, etc)
• All events have meta data about time and current process

• Event data such as signal data or free text from application

• Trace data can be saved in text files for further processing
• Trace data uploaded and displayed in Eclipse tools

Event Breakpoints
• Stop application on specified system or application events
• Select which applications/processes to stop
• Show data about the event in Eclipse tools

Are you still awake?

Report Profiling – A flexible
profiling system

Report Profiling

• Reports contains information about usage over time
• A report contains statistic for a configurable integration period
• Values represented as signed integers, suitable for percent

and amount
• The data can be one or two dimensional

• Reports are generated periodically by the OS and stored in a
circular buffer (of a dynamic configurable size)

• Clients (host or target based) read continually and receives
chunks of reports in an efficient way

• Open and documented client API for configuring and reading
reports

Report Profiling

• Different types of Report Profiling
– CPU usage per

• CPU (per core in SMP systems)
• Process priority (interrupt, 0-31, and background)
• Process (thread) (configurable max number per report)
• Program

– Heap usage per:
• Process (configurable max number)

– top users
– User defined (OS provided API)

CPU Report Profiling
• CPU Usage per core (in SMP systems)
• CPU Usage per priority level, including interrupt level
• CPU Usage per process

– top users
– specified ID
– specified name
– system processes shown as sum

• Resolution only limited by hardware clock
• Two measurement principles interrupt sampled or recording

context switches

• Statistics can be saved in text files for further processing

• Statistics presented in graphs in Eclipse tools

User Report Profiling

• Measuring type identifier is allocated by user
• Almost zero intrusiveness when not used
• Single value or value per object (two dimensional)
• Optionally the maximum and minimum value per interval can

be collected

• Simple API provided by the OS, only two functions:
� ose_create_report(SIGSELECT reportno, OSADDRESS *trig,

OSBOOLEAN multiple, OSBOOLEAN
 continuous, OSBOOLEAN

maxmin);
� ose_set_report_val(SIGSELECT reportno, OSREPORTID id,

OSREPORTVAL change);

User Report Use Cases

• Measure
– Network I/O bandwidth utilization
– Different types of memory consumption
– File system utilization
– Hardware registers

• Collect statistics from hardware counters
• Hardware automatically read when integration period ends

– Any resource statistic or application numbers you can think of!

• Load balancing applications can use this for distributing jobs in
a cluster

• Using Optima tools for pinpointing bottlenecks and
optimization opportunities

• Visualize what is going on in my complex distributed system

Taking the Event and Profiling
System to Linux

• LINX – The Signal and Link handler concept for OSE, OSEck,
and LINUX!

– Now is the simple and powerful signal API available for Linux
including the hunt, attach, send, and receive functionality

– Tightly integrated in the Linux kernel
– Open and available to all from Sourceforge
– The right OS for the right task and they can all talk to each other

• Next step is to bring the advanced event action system and
report profiling to Linux

– Integrate the Event system with LINX and the Linux kernel
– Provide the user report profiling API for Linux

• Linux developers will benefit from powerful system tools
previously only available for OSE!

Questions?
sven.lundblad@enea.se

