
1

© 2002 IBM Corporation© 2008 IBM Corporation

Tracing for Performance
Monitoring on Parallel and
Distributed Systems

Dr. Robert W. Wisniewski
Manager Blue Gene Software
IBM T. J. Watson Research
http://www.research.ibm.com/people/b/bob/

January 29, 2008

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation2

Outline
� SGI (RTAS – Real-Time Technology and Applications Symposium 95)

– rtmon

– Kernel and Cray Unification

– Lessons

� K42 (Supercomputing 03)
– Approach, scalability, and use

– Lessons

� CPO (Continuous Program Optimization) (PAC2 2004)
– PEM (Performance Environment Monitoring)

– Lessons

� CSO (Commercial Scale-Out) (europar07 – slides thanks Jose Moreira)
– Goals

– Lessons

� Blue Gene / P (internal – slides thanks Valentina Salapura)

� Observations on Linux and LTT

� The “next system” - concluding remarks

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation3

SGI rtmon

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation4

SGI rtmon

� rtmon bottom layer

– Per-processor

– Multiple writes user q

•atomicIncWrap gets
index

• Set valid bit when
done

•Reader clears valid
bit

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation5

SGI rtmon

� rtmon middle layer

– Assign meaning to
events, recreate frames

– Report discrepancies

– Calculate extreme value

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation6

SGI rtmon

� rtmon top layer

– Multiple view

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation7

SGI Kernel and Cray Unification

� rtmon extended to kernel

– 3 separate tracing schemes depending on what you were doing

•Confusing

•Error prone

•Hurts performance

� SGI purchases Cray

– 5 separate tracing schemes…

– Cray introduces another aspect

•Need data from machines in field that are not possible to build
in house – requires extensive events and black-box capability

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation8

SGI Lessons

� rtmon

+ Collect cheaply on line more expensive off line processing

• Roughly ¼ of machine needed to get events off

• Tradeoff between application-specific design and generality

+ Single system of trace events useful

+ Possible to do non-locking tracing

– Fixed events are cumbersome

❶ Visualization is key

•It’s the killer app for tracing

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation9

Outline
� SGI

– rtmon

– Kernel and Cray Unification

– Lessons

� K42
– Approach, scalability, and use

– Lessons

� CPO (Continuous Program Optimization)
– PEM (Performance Environment Monitoring)

– Lessons

� CSO (Commercial Scale-Out)
– Goals

– Lessons

� Blue Gene / P

� Observations on Linux and LTT

� The “next system” - concluding remarks

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation10

K42’s Goals (started 1997)

� Scalability
– Up to large MP and large applications

– down for small-scale MP and small apps on large-scale MP
� Flexibility/Customizability:

– policies/implementations of every physical/virtual resource instance can be customized to
application needs

– system can adapt to security and performance faults without penalizing common case
performance

� Portability:
– can be easily ported to new 64-bit platforms

– can exploit features of HW
� Availability:

– fault containment: should be able to survive HW failures on large MP

– can be dynamically upgraded without bringing system or apps down
� Maintainability/Extensibility:

– highly module structure

– re-enable the OS research community
� Full Functionality and Linux compatibility:

– support huge numbers of Linux apps and drivers without modification

– transfer technology back and forth to vanilla Linux

Goals: Performance Monitoring

� Provide unified events for correctness and performance
� Allow events to be gathered efficiently on a multiprocessor
� Allow efficient logging of events from applications, servers, and the

kernel into a unified buffer with monotonically increasing timestamps
� Have the infrastructure always compiled into the system allowing

data gathering to be dynamically enabled
� Separate the collection of events from their analysis
� Have minimal impact on the system when tracing is not enabled;

allow for zero impact by providing the ability to "compile out" events
� Provide cheap and flexible collection of data for either small or large

amounts of data per event

Key Ideas

* lockless logging
* random access variable length events
� unified events
^ user-mapped per-processor buffers
^ major and minor ids

Lockless Logging

0
current index

Process A – to log 2 words
Process B – to log 3 words

Lockless Logging

0
current index

1
current index

current index

proc A

proc B

Lockless Logging

0
current index

1
current index

current index

proc A

proc B

B
current index

2

Lockless Logging

0
current index

1
current index

current index

proc A

proc B

B
current index

2

B
current index

3A

works between user, servers, kernel
potential problems – event loss etc.

Random Access
Variable Length Events

� Variable length events (vs fixed length)
� more flexible
� cheaper

• space
• time

� easier for longer events

Lockless Logging

fixed fixed fixed fixed

works for RAM and disk

Use
Event Listing

21.4747350 TRC_USER_RUN_UL_LOADER
21.4747422 TRC_EXCEPTION_PGFLT
21.4747882 TRC_EXCEPTION_PGFLT_DONE
21.4748091 TRC_EXCEPTION_PPC_CALL
21.4748530 TRC_MEM_FCMCOM_ATCH_REG
21.4748709 TRC_MEM_FCMCRW_CREATE
21.4749142 TRC_EXCEPTION_PPC_RETURN
21.4749247 TRC_EXCEPTION_PPC_CALL
21.4749573 TRC_MEM_REG_CREATE_FIX
21.4749773 TRC_MEM_REG_DEF_INITFIXED
21.4749873 TRC_MEM_ALLOC_REG_HOLD
21.4749962 TRC_MEM_ALLOC_REG_HOLD
21.4750293 TRC_MEM_FCMCOM_ATCH_REG

process 6 created new process with id 7 name /shellServe
PGFLT, kernel thread 80000000c12b0f90, faultAddr 405e628,
PGFLT DONE, kernel thread 80000000c12b0f90, faultAddr 405
PPC CALL, commID 0
Region 800000001022cc98 attached to FCM e100000000003f30
TRC_MEM_FCMCRW_CREATE ref e100000000003f90
PPC RETURN, commID 600000000
PPC CALL, commID 0
Region default 10000000 created fixlen addr 113000
region default init fixed 80000000102b7c00 addr 10000000
alloc region holder addr 10000000 size 113000
alloc region holder addr 10000000 size 113000
Region e100000000003fa0 attached to FCM e100000000003f90

Use
Fine-Grained Behavior

pid: 3d parent: 30 lpid: 163 lparent: 157
Exec:./runtest.sh /bin/rmdir
SCbrk : 8.39/4/8 f: p: 31.16/2
SCchild : 338.43/4/120 f: 1041.17/80 p: 107.45/18
SCexecve : 209.59/1/86 f: 273.20/15 p: 691.53/34
SCexit : 13.43/1/9 f: p: 24.19/5
SCmmap : 53.39/4/42 f: p: 199.94/19
SCrmdir : 13.61/1/3 f: p: 53.92/1
dispatcher : 32.71/1/13 f: 87.53/7 p: 9.77/3
user : 1718.56/27/104 f: 1304.87/76 p:
In-process total: 2500.18/434

cleanup : 929.41/1/5 f: p:
fault : 2804.31/184/186 f: p:
ppc : 1274.52/93/210 f: p:
Ex-process total: 5008.23/401
wall 10800.11/0

CRT::ForkChildPhase2 255.32/2
DispatcherDefault::AsyncMsgHandler 4.05/3
CRT::ForkWorker 246.10/4
COSMgrObject::CleanupDaemon 185.61/2
MPMsgMgrEnabled::ProcessMsgList 3.56/1

Use
Lock Contention Analysis

top 10 contended locks by time - for full list see traceLockStatsTime

time (secs) count spin max time pid
call chain

3.466320753 1209 188795433 0.012220087 0x1
AllocRegionManager::alloc(unsigned
PMallocDefault::pMalloc(unsigned
GMalloc::gMalloc()

0.684612632 573 37233770 0.007647854 0x0
AllocRegionManager::alloc(unsigned
PMallocDefault::pMalloc(unsigned
GMalloc::gMalloc()

0.104643241 11885 4910595 0.000322320 0x1
PageAllocatorDefault::deallocPages(unsigned
PageAllocatorUser::deallocPages(unsigned
AllocPool::largeFree(void*,

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation23

K42 Lessons

� K42

+ Static trace points valuable

•More efficient (94 cycles on K42)

•Modified when code is modified

+ Separate definition files useful

+ Breakdown into major and minor classes useful

+ Variable length events

+ Single unified system for events

+ Dynamic enabling and disabling useful

– No dynamic events

– No flexibility at event time

❶ Visualization is key

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation24

Outline
� SGI

– rtmon

– Kernel and Cray Unification

– Lessons

� K42
– Approach, scalability, and use

– Lessons

� CPO (Continuous Program Optimization)
– PEM (Performance Environment Monitoring)

– Lessons

� CSO (Commercial Scale-Out)
– Goals

– Lessons

� Blue Gene / P

� Observations on Linux and LTT

� The “next system” - concluding remarks

25

CPO Vision and Potential

monitoring,
poor performance

detection,
evaluation of

directives

Application

multiple threads
parallel loops
data structures
communication

PEM

load monitoring, loop instrumentation,
PMU analysis, feedback directed optimization (FDO)
etc.

online
info

CPO
data
base

CPO

unified framework
for including work
from many groups

migrate thread,
redistribute loop,
page size request,
FDO, etc.

CPO
online
agent

CPO

PEM
PEM

page benefit analysis,
aggregation formation,
program analysis, trace
conversion

event
trace

CPO

CPO

CPO
offline
agent

CPO

CPO

PEM Trace

Visualizer

26

CPO Architecture

Event
Trace

PE Trace
Visualizer

CPO
database

CPO
offline agent

online analysis/
optim

ization

continuous
monitoring

trace analysis,
modeling

persistent storage
of analysis/
optimization
directives

offline loop

online loop

Application

App Server

Operating System

Hardware/Simulator
C

P
O

 online agent

Java VM

Hypervisor

P
E

M

Static compiler
feedback-
directed
optimization

Libraries

Native
application

Post-link
optimizer

history,
optimization directives,

control

data/code

IBM T. J. Watson Research Center

© 2005 IBM Corporation27 IBM ConfidentialPERCS Continuous Program Optimization January 30, 2008

Overview of Overview of cthcth performance using PEperformance using PE

IBM T. J. Watson Research Center

© 2005 IBM Corporation28 IBM ConfidentialPERCS Continuous Program Optimization January 30, 2008

Comparison of large page mapping categories shown in PEComparison of large page mapping categories shown in PE

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation29

CPO Implementation

� Extended K42’s infrastructure

– Events from a wider range of layers

•Extended notion of majors and minors to layers

– Integrated HW performance counters

– Self describing event definitions in XML

– Extended to more than tracing, at each “event”:

•Trace event

•Gather statistics on event, with tracing at threshold

•Call a handler for event

•All of the above

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation30

CPO Lessons

� CPO

+ Vertical integration with HPCs powerful

+ Addition of statistics option good for online monitoring

+ Multiplexing hardware counters (ICS 05)

– No dynamic events

– No automatic packaging of trace and description files

❶ Visualization was valuable

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation31

Outline
� SGI

– rtmon

– Kernel and Cray Unification

– Lessons

� K42
– Approach, scalability, and use

– Lessons

� CPO (Continuous Program Optimization)
– PEM (Performance Environment Monitoring)

– Lessons

� CSO (Commercial Scale-Out)
– Goals

– Lessons

� Blue Gene / P

� Observations on Linux and LTT

� The “next system” - concluding remarks

IBM Research

© 2007 IBM Corporation32 Euro-Par 2007 – Rennes, France 31-AUG-2007

Introduction

� In scientific/technical computing, parallel processing
became mainstream in the 80’s

� Since the early 90’s there has been a strong move of
commercial computing away from single-processor
machines to multi-processor systems, as the latter
became more cost efficient

� Two different approaches to multiprocessors:

– Scale-up: large shared-memory machines

– Scale-out: clusters of interconnected smaller machines

IBM Research

© 2007 IBM Corporation33 Euro-Par 2007 – Rennes, France 31-AUG-2007

Introduction

� In scientific/technical computing, parallel processing
became mainstream in the 80’s

� Since the early 90’s there has been a strong move of
commercial computing away from single-processor
machines to multi-processor systems, as the latter
became more cost efficient

� Two different approaches to multiprocessors:

– Scale-up: large shared-memory machines

– Scale-out: clusters of interconnected smaller machines

IBM Research

© 2007 IBM Corporation34 Euro-Par 2007 – Rennes, France 31-AUG-2007

Scale-up Scale-out

IBM Research

© 2007 IBM Corporation35 Euro-Par 2007 – Rennes, France 31-AUG-2007

Commercial Scale Out experimental system

Fiber Channel

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

2G
DS4100

2G

2G

2G

BC-H chassis

4G

1G

Ethernet

1G

Fiber Channel

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

2G
DS4100

2G

2G

2G

BC-H chassis

4G

1G

Ethernet

1G

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

2G
DS4100

2G

2G

2G

BC-H chassis

4G

1G

Ethernet

1G

IBM Research

© 2007 IBM Corporation36 Euro-Par 2007 – Rennes, France 31-AUG-2007

Understanding performance in commercial scale-out

� Two challenges similar to scientific computing:
– Lots of processing elements � lots of trace data: need

techniques to limit data and identify important parts
– Correlate events from different machines � need

synchronized time

� Two challenges unique to commercial:
– Complexity of the software stack � hypervisor, operating

system, Java, middleware, application
– Many threads of execution per processing element �

multiple threads per process and multiple processes per
processor – it is not unusual to see hundreds to thousands
of threads per machine!

IBM Research

© 2007 IBM Corporation37 Euro-Par 2007 – Rennes, France 31-AUG-2007

Starting point

� Linux Trace Toolkit Next Generation (LTTng):
– Extracts information from hypervisor to application
– Requires instrumentation but it is uniform across layers
– Low overhead

� Linux Trace Toolkit Viewer (LTTV):
– Merges data collected by each software layer
– Identifies the producer of each event (node, process, thread)
– Classifies the execution context (process, trap, interrupt, system call)

� Enhancements to LTTng:
– PowerPC-specific instrumentation
– Tracing support for Java – addition of thread branding (also LTTV)

� Performance monitoring facility
– Uses hardware performance counters in PowerPC
– Identified bottlenecks through statistical sampling

IBM Research

© 2007 IBM Corporation38 Euro-Par 2007 – Rennes, France 31-AUG-2007

IBM Research

© 2007 IBM Corporation39 Euro-Par 2007 – Rennes, France 31-AUG-2007

Stall breakdown

� ~2 billion completing cycles/sec (20% of total 10 billion)

� 6 billion instructions/sec

� Non-stall CPI (CPIC): 0.34 Average for SPECcpu 2000: 0.35

� Average bundle size: 3

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation40

CSO Lessons
� CSO

+ Tracing useful

+ HPCs useful

– Performance monitoring for distributed commercial workloads needs
more work

•Handling many small, in terms of CPU usage, tasks

•Automatic process branding

•Inter-machine timer synchronization

•Automatic idle determination

•Cross machine logical causality

•Tree-based causality

•Selective aggregation of performance data

•Virtualization

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation41

Outline
� SGI

– rtmon

– Kernel and Cray Unification

– Lessons

� K42
– Approach, scalability, and use

– Lessons

� CPO (Continuous Program Optimization)
– PEM (Performance Environment Monitoring)

– Lessons

� CSO (Commercial Scale-Out)
– Goals

– Lessons

� Blue Gene / P

� Observations on Linux and LTT

� The “next system” - concluding remarks

IBM Confidential 42

BlueGene/P

13.6 GF/s
8 MB EDRAM

4 processors

1 chip, 20
DRAMs

13.6 GF/s
2.0 GB DDR2

(4.0GB is an option)

32 Node Cards

13.9 TF/s
2 TB

72 Racks, 72x32x32

1 PF/s
144 TB

Cabled 8x8x16����

����	

��

��	�����

���

435 GF/s

64 GB

(32 chips 4x4x2)
32 compute, 0-1 IO cards

���	�����

��

�������	
�����

���

���

��

������������
����������
� �������
����������
���������
����
 �
� !"�������
�������
�����#�
��
� $�

�����������������������	
 �%�&��'���'����
�����
������������ 	
 �
�������
#��
�����(

�)�#���	���
�������
� *���
 �
������
�	�
�
���

��+,-$�	��	��
� *
��� �
�
�����
����	�	�
����
.��
���������	
�����

�����

�

� *���
 �	���
�������
� !�������� ����
������	����
����
������
�� ���

��
����������
�
� ����
����� ����
�������� �

�	
�+,-$�	��	�
� +,-$���	����� 	�� �	��	������	���	�
���
 �����	����	��

����
����
� /�
�
���	����

����������
�
�	
 �

�������
� �
��������

�	�
�
����
������������� �#	����
����	��� �

��

IncrementCarry

Counter
Address

FSM

C
ounter events

Interrup
t

52 bit increment

Interrupt threshold reg.
=

Interrupt
Arm

*���
 ��$&�	���
��������

��

&�	�������$&�

����
� 0��
�����
����������
�
�
�
���1

�������	����2	�����
� -
	��3�������2����
�
�����
�������

�����
������
�������
�
3	�
�
��
	
 �

�������
��������
#�
���

� /�
��� ���
�����������
#�
�������
����#	�
�����	� �	���4������	���
����

������ �����

������
���
�	����
�
���	�
�

� ����
���	
 ���	�	����
3��
���(��	 ������#	�
������ ������
����	�
�
����	��
�#���	2
����
�������	
����
�����
������������	(��
����%������	�
�
��

BG/P Software © 2007 IBM Corporation46

Coreprocessor showing program counter on 4 racks

IBM Research

47

Data and Control Flow of HPCS Toolkit

HPCS Toolkit provides Autonomic Application
Performance Capability.
� Intelligent automation of performance evaluation and decision

system
� Interactive capability with graphical/visual interface always

available, but always optional

H
P
MFPU

stalls
L2
misses

MPI

Bottleneck Discovery Engine
(Data Centric Analysis)

Original
Program

Compiler

Execution
File

Data
Collection

(pSigma)

Performance
Data (Memory,
MPI, I/O, …)

??
Performance Bottleneck
(e.g. Communication
imbalance: Array A)

Program
Information

Solution Determination Engine
(Alternate Scenario Prediction)

Modified Program (e.g. Block
cyclic distribution of A)

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation48

Outline

� SGI

– rtmon

– Kernel and Cray Unification

– Lessons

� K42

– Approach, scalability, and use

– Lessons

� CPO (Continuous Program Optimization)

– PEM (Performance Environment Monitoring)

– Lessons

� CSO (Commercial Scale-Out)

– Goals

– Lessons

� Blue Gene / P

� Observations on Linux and LTT

� The “next system” - concluding remarks

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation49

What is right for Linux and How

� Patches versus dynamic points versus markers versus static

� One infrastructure versus many

� Get performance monitoring community active on lkml

� Get nose in tent

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation50

Outline

� SGI

– rtmon

– Kernel and Cray Unification

– Lessons

� K42

– Approach, scalability, and use

– Lessons

� CPO (Continuous Program Optimization)

– PEM (Performance Environment Monitoring)

– Lessons

� CSO (Commercial Scale-Out)

– Goals

– Lessons

� Blue Gene / P

� Observations on Linux and LTT

� The “next system” - concluding remarks

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation51

The Final Next System

� Efficient, Flexible tracing

– Single unified space over all layers including HW counters

– Use static events or event markers

– Enable system to trace, gather stats, or callback at event

– Allow additional dynamic events

– Break into categories and allow dynamic enabling

– Provide automatic tool for packaging up data and description

– Timer synchronization built into infrastructure

– Variable sized events

– Non-locking and scalable gathering

– Efficient online gathering for more extensive offline analysis

– Negligible impact when disabled

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation52

The Final Next System

� Configurable visualization

– Ability to add new graphs and have system save view

– Pluggable modules to interpret application-specific events

– Ability to handle massive (100G +) trace data

•Quick start up

•Summary and stats information on selectable portion

– Handle multicore, multiprocessor, and distributed data

– Handle real-time, scientific, and commercial data

– Lots of interesting work left to understand commercial systems

– Nice default views

•Time-centric time by process, thread-centric view, statistics,
histogram, event list

