January 29, 2008

Tracing for Performance
Monitoring on Parallel and
Distributed Systems

Dr. Robert W. Wisniewski
Manager Blue Gene Software
IBM T. J. Watson Research

http://www.research.ibm.com/people/b/bob/

© 2008 1BM Corporation

Outline

» SGI (RTAS — Real-Time Technology and Applications Symposium 95)
- rtmon

— Kernel and Cray Unification
— Lessons
= K42 (Supercomputing 03)
— Approach, scalability, and use
— Lessons
= CPO (Continuous Program Optimization) (PAC2 2004)
— PEM (Performance Environment Monitoring)
— Lessons
» CSO (Commercial Scale-Out) (europar07 — slides thanks Jose Moreira)
— Goals
— Lessons

» Blue Gene /P (internal — slides thanks Valentina Salapura)
» Observations on Linux and LTT
* The “next system” - concluding remarks

Monitoring Distributed Systems for Diagnostic Purposes

© 2008 IBM Corporation

SGI rtmon

Frame Scheduler

Major Frames: Determines period - a complete cycle of processes

Minor Frames: Independent units within major frame - used for
setling up sepcific application behavior

Major Frame Major Frame

Alinor-0 Minar-1 M2 Mingm- Miner-1 Minoe-2

) - e B -

R TR TR

Real-time Fvent Tnlermapis

Process Queies

20 Ql 22

Processes can be enqueued in more than one process queue

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation

SGI rtmon

* rtmon bottom layer

Kernel
— Per-processor
Intr Enter
— Multiple writes user @ Erm
ntext
satomicincWrap gets
index
» Set valid bit when
Library Calls for

done

Reader clears valid

accessing merged
stream of data

. rtmon_gel_next_event
blt rtmon_get_time
rtmon_get_pid
rtimon_get_type

rimon_pause_kem
rimon_resume_both

Monitoring Distributed Systems for Diagnostic Purposes

Merging

Routines

Merged

eventj_|

eventy,

event; o

event;, 3

eventy g

eventj, g

event;, 5

eventi s,

USET.
L

FrameView - Bottom Layer

U.ﬁB I'2
/

User Start

User End

My Own

typedef struct {
long long time;
int event;
int pid;
int type:

} merge _event (;

-

© 2008 IBM Corporation

SGI rtmon FrameView - Middle Layer

* rtmon middle layer

Library Calls for
accessing major
frame statistics

rtmon_get next_ave
rtmon_get_startup_times
rtmon_get_frame_ave
rtmon_get_maj_proc_ave

— Assign meaning to
events, recreate frames

Merged

Major Framse Start

— Report discrepancies

rtmon_sel_frame ave factor
rimon_set_proc_ave_factor

rimon_gel_max_time
rtmon_get_max_kern_time
rimon_get_max_proc_time

— Calculate extreme value

Minor Frome Start

Muajor Frame

Minor Frame Start

I-
R o
uscr start —_—
user end ——
| o

Major Frame Start A ? ? + +i 4 T

Statistics Routines

Process (Jocucs

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation

Kernel Startup Graph
SGI rtmon Real-Time Monitoring Tools

* rtmon top layer

— Multiple view

Max Kernel Startup Time
Minor Frame 1

Above represents full view matching the view as seen in the main graph

Below represents a blown up image of the kemel startup time for minor frame 0

Colors of event labels match color bars

sndswrs raveahe

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation

SGI Kernel and Cray Unification

= rtmon extended to kernel
— 3 separate tracing schemes depending on what you were doing
*Confusing
*Error prone
*Hurts performance
» SGI purchases Cray
— b separate tracing schemes...

— Cray introduces another aspect

*Need data from machines in field that are not possible to build
In house — requires extensive events and black-box capability

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation

SGI Lessons

= rtmon

+

Collect cheaply on line more expensive off line processing

Roughly ¥ of machine needed to get events off

Tradeoff between application-specific design and generality

Single system of trace events useful
Possible to do non-locking tracing
Fixed events are cumbersome
Visualization is key

It’s the Killer app for tracing

Monitoring Distributed Systems for Diagnostic Purposes

© 2008 IBM Corporation

Outline

SGlI

rtmon

[l
IH
il

L.'
{

il
ﬁ}iﬂn

Kernel and Cray Unification
Lessons

Approach, scalability, and use
Lessons
|

CPO (Continuous Program Optimization)

PEM (Performance Environment Monitoring)
Lessons
|

Goals

CSO (Commercial Scale-Out)

Lessons
= Blue Gene /P

Observations on Linux and LTT

The “next system” - concluding remarks

Monitoring Distributed Systems for Diagnostic Purposes

© 2008 IBM Corporation

K42's Goals (started 1997)

Scalability

— Up to large MP and large applications

— down for small-scale MP and small apps on large-scale MP
Flexibility/Customizability:

— policies/implementations of every physical/virtual resource instance can be customized to
application needs

— system can adapt to security and performance faults without penalizing common case
performance

Portability:
— can be easily ported to new 64-bit platforms
— can exploit features of HW
Availability:
— fault containment: should be able to survive HW failures on large MP
— can be dynamically upgraded without bringing system or apps down
Maintainability/Extensibility:
— highly module structure
— re-enable the OS research community
Full Functionality and Linux compatibility:
— support huge numbers of Linux apps and drivers without modification

— transfer technology back and forth to vanilla Linux

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation

Goals: Performance Monitoring

= Provide unified events for correctness and performance
= Allow events to be gathered efficiently on a multiprocessor

= Allow efficient logging of events from applications, servers, and the
kernel into a unified buffer with monotonically increasing timestamps

= Have the infrastructure always compiled into the system allowing
data gathering to be dynamically enabled

= Separate the collection of events from their analysis

= Have minimal impact on the system when tracing is not enabled;
allow for zero impact by providing the ability to "compile out" events

= Provide cheap and flexible collection of data for either small or large
amounts of data per event

Ki2

The Answer To ...

Key Ideas

* lockless logging

* random access variable length events
-> unified events

N user-mapped per-processor buffers

N major and minor ids

|
il
T

]
K]
lin

Lockless Logging

current index

Process A —to log 2 words
Process B —to log 3 words

llllll

U
nll
iy

Lockless Logging

current index
0 h

current index

1 proc A
current index

proc B

Lockless Logging

current index
0 h
current index
I 2

current index

1 proc A
current index

proc B

The Answer To ...

Lockless Logging

current index
0 h
current index
I 2

current index

proc A
1

current index
| icurrent index _ 3

proc B

works between user, servers, kernel
potential problems — event loss etc.

Ki2

The Answer To ...

Random Access
Variable Length Events

= Variable length events (vs fixed length)
¢+ more flexible

¢+ cheaper
e Space
e time

¢+ easiler for longer events

Lockless Logging

R HE
__

works for RAM and disk

|||

KK
!
il

Use

Event Listing

21.4747350 TRC_USER_RUN_UL_LOADER
21.4747422 TRC_EXCEPTION_PGFLT
21.4747882 TRC_EXCEPTION_PGFLT_DONE
21.4748091 TRC_EXCEPTION_PPC_CALL
21.4748530 TRC_MEM_FCMCOM_ATCH_REG
21.4748709 TRC_MEM_FCMCRW_CREATE
21.4749142 TRC_EXCEPTION_PPC_RETURN
21.4749247 TRC_EXCEPTION_PPC_CALL
21.4749573 TRC_MEM_REG_CREATE_FIX
21.4749773 TRC_MEM_REG_DEF_INITFIXED
21.4749873 TRC_MEM_ALLOC_REG_HOLD
21.4749962 TRC_MEM_ALLOC_REG_HOLD
21.4750293 TRC_MEM_FCMCOM_ATCH_REG

I
i
lin

process 6 created new process with id 7 name /shellServe
PGFLT, kernel thread 80000000c12b0f90, faultAddr 405e628,
PGFLT DONE, kernel thread 80000000c12b0f90, faultAddr 405
PPC CALL, commID O

Region 800000001022cc98 attached to FCM e100000000003f30
TRC_MEM_FCMCRW_CREATE ref e100000000003f90

PPC RETURN, commID 600000000

PPC CALL, commID O

Region default 10000000 created fixlen addr 113000

region default init fixed 80000000102b7c00 addr 10000000

alloc region holder addr 10000000 size 113000

alloc region holder addr 10000000 size 113000

Region e100000000003fa0 attached to FCM e100000000003f90

The Answer To ...

Use
Fine-Grained Behavior

pid: 3d parent: 30 Ipid: 163 Iparent: 157
Exec:./runtest.sh /bin/rmdir

SCbrk 8.39/4/8 f: p: 31.16/2
SCchild 338.43/4/120 f: 1041.17/80 p: 107.45/18
SCexecve 209.59/1/86 f: 273.20/15 p: 691.53/34
SCexit 13.43/1/9 f: p: 24.19/5
SCmmap 53.39/4/42 f: p: 199.94/19
SCrmdir 13.61/1/3 f: p: 53.92/1
dispatcher : 32.71/1/13 f: 87.53/7 p: 9.77/3
user ; 1718.56/27/104 f: 1304.87/76 p

In-process total: 2500.18/434

cleanup 929.41/1/5 f: p:

fault 2804.31/184/186 f: p:

ppc 1274.52/93/210 f: p:
Ex-process total: 5008.23/401

wall 10800.11/0

CRT::ForkChildPhase2 255.32/2
DispatcherDefault::AsyncMsgHandler 4.05/3
CRT::ForkWorker 246.10/4
COSMgrObject::CleanupDaemon 185.61/2
MPMsgMgrEnabled::ProcessMsgList 3.56/1

| |
K]
lin
|_‘|||

The Answer To ...

| |
il
Huyll
i)

|

Use
Lock Contention Analysis

top 10 contended locks by time - for full list see traceLockStatsTime

time (secs) count spin max time pid
call chain

3.466320753 1209 188795433 0.012220087 0x1
AllocRegionManager::alloc(unsigned
PMallocDefault::pMalloc(unsigned
GMalloc::gMalloc()

0.684612632 573 37233770 0.007647854 0x0
AllocRegionManager::alloc(unsigned
PMallocDefault::pMalloc(unsigned
GMalloc::gMalloc()

0.104643241 11885 4910595 0.000322320 0Ox1
PageAllocatorDefault::deallocPages(unsigned
PageAllocatorUser::deallocPages(unsigned
AllocPool::largeFree(void*,

Ki2

The Answer To ...

= O], ASMSUY Y],

Ho |

™

Mo 8 43[1F
B[4 = el
pal [qo:
[juid] ey
‘BBUBIO -
EjUabEL _ HL15 HISN " 3DPHL
= vl MIgW JINHNLIE HISN Hl
uaalb MIWTTTYD 835N 3004l
AEdb D3I LIS HIS 30wdL| | I
AEADYIED HAAROTTINTHAYTHISA TIowE L
LEAD MIGWTAINTIEITHISA T IDEL
anjq EHISN THIASN T IDWHL
HoE|q ZHIASATHISN T IDRH L [+ Hr

850047 JoU) 85504 T JoTel 500U g g

540102 did
$I0|03 ¢a2

=150] }__,0_.,_m
5900 Emm
FASSE00.Y MOLS
51U8A3 N0 UL
al spuand ||y apiH
....................... .ut.m_gu m._n__I
JuEsT Mols
 pannun

g pannL

|.m

Z6TZEOT y3bust =113
peEsa =T71F Burjaegs

ENIYWTOINENLIE THAST 30V

BO9'S 4D ZES'S 8WIL ¢} EZE'T AW WOl 4o GEZOE JUBAS PUB £549 JUBAS JIEYS

digH Wwooz 51815 moys 8|l

o

K42 Lessons

= K42

+ Static trace points valuable

*More efficient (94 cycles on K42)
Modified when code is modified

+ Separate definition files useful

+ Breakdown into major and minor classes useful
+ Variable length events

+ Single unified system for events

+ Dynamic enabling and disabling useful

— No dynamic events

— No flexibility at event time

O Visualization is key

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation

Outline

SGlI

rtmon

[l
IH
il

L.'
{

il
ﬁ}iﬂn

Kernel and Cray Unification
Lessons
|

Approach, scalability, and use
Lessons

» CPO (Continuous Program Optimization)

PEM (Performance Environment Monitoring)
Lessons

Goals

CSO (Commercial Scale-Out)

Lessons
Blue Gene / P

Observations on Linux and LTT

The “next system” - concluding remarks

Monitoring Distributed Systems for Diagnostic Purposes

© 2008 IBM Corporation

CPO Vision and Potential

load monitoring, loop instrumentation,
PMU analysis, feedback directed optimization (FDO) PEM Trace

etc. /

PEM Visualizer

Application

multiple threads

parallel loops
data structures poor performance .
detection, offline

communication evaluation of conversion
S agent
directives
CPO CcPO [2
migrate thread, online data
redistribute loop, agent - unified framework

page size request for including work
T

= page benefit analysis,
aggregation formation,
CPO program analysis, trace

monitoring,

\\

FDO, etc.
from many groups

25

CPO Architecture

Static Compiler : IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII E
feedback- >control
i directed S PP »data/code
. optlmlzatlon .
S EERRRRLEELEE POSt-1INK |@=scereecccemmmmesnnnnnnafenmnnnnnnns ;
optimizer |
_ el persistent storage
COI"ItI.nU(.)US PETSTPCTTTTIPITTTTEPEPRITEREE L it CPO of ana|ysi3/
monitoring ¥ ‘ database| optimization
& Application Native #~ | 88 directives
. . U = = .
+ App Server | @pplicationgy 51 2 ? history,
: : o = = optimization directives,
o & JavaVM Libraries €3 | S & ¥
< > & CPO trace analysis
- - -~ o _ :
Operating System o [> offline agent modeling
L Hypervisor G .
) :
N Hardware/Simulator ~ ¥% =
online loop ; I PE Trace
: _ Event : .
e L Oftline loop Trace Visualizer

Overview of cth performance using PE

3 records r
B records B records T

18 records I TT T

3 records i

o

55 records 7T records mT I
(60430 il

-

0.0(Min S
1.7893

|[Page Faults pafits 1 recor! recor 1]
¥

-

CPI cpi 1 recor! recor il b _ I | | | . . I
10.2013 -t

72606, ¥
TLB misses Tliahis:1 recor1 recor

22.0(Mi
711350

|Ibata ERAT misses Derathf1 recor 1 recor

2348.0 el
70767

||Load L1 misses Lahtigs1 recor] recor

794.0(h

4

Comparison of large page mapping categories shown in PE

'erformance Explorer (PE)
File

Strip Array

| +|| -|| & ||u| E | Zoom all ||-Zuum-uut || £oom in | | < || b | Centerl

“—ﬁ“—qwﬁwwmwﬂwﬂﬂ—*#—#éﬁ_wwﬂw_wﬁw YRR WO et R S S - R 1’1 =
06 16 2G 36 46 56 BG
'y & &
r " Y -
‘oG Y5 25 '35 46 55

1 recor recory!

|Istatic cpi 1 record recars?

0.0 = i - o
1.8 !

|[smDymamic + static cpi 1 recor recor

0.0
1.8

{luDymamic chi 1 recar! recar

0.0 i
18 H

[loDynamic + static cni 1 recort recory!

0.0
1.8 t

ligbynamic + smDy... tpi 1 recort recors

0.0 s
1.8 H

liall large pages cpi 1 record recory!

0.0

T ol N st i el e e Sl Tl | e s et el e e i S P

1
1 record recors! : ; : 5 o 2 i : - - : 5 ; !
L5 |8 LR s || i g - W mtio = oy f T W : o’ | o2 o | B P el bl e F)
0 - w_.i-... W B P i_,-lﬂ"_-ﬂﬁ,_tﬂ_-_‘_. :F-H'—-m.."'-r“»—i"'_“’r" : w'_,-wh o AP A :_.-u_'__huu‘_-_" ;-*nﬁ”:aﬂb__;_,:—u_‘_g_,-_-ﬂf e ’_J_’_'_M __r-;rw_‘___-'_-ﬁ”- —-\I»
1.8 1

1
UL L P UL S SR S RPN SIS PRI S

4

CPO Implementation

= Extended K42’s infrastructure

— Events from a wider range of layers

*Extended notion of majors and minors to layers

— Integrated HW performance counters
— Self describing event definitions in XML
— Extended to more than tracing, at each “event”:

*Trace event
*Gather statistics on event, with tracing at threshold
«Call a handler for event

*All of the above

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation

CPO Lessons

= CPO

+

+

Vertical integration with HPCs powerful

Addition of statistics option good for online monitoring

Multiplexing hardware counters (ICS 05)
No dynamic events
No automatic packaging of trace and description files

Visualization was valuable

Monitoring Distributed Systems for Diagnostic Purposes

© 2008 IBM Corporation

Outline

SGlI

rtmon

[l
IH
il

L.'
{

il
ﬁ}iﬂn

Kernel and Cray Unification
Lessons
|

Approach, scalability, and use
Lessons

= CPO (Continuous Program Optimization)

PEM (Performance Environment Monitoring)
Lessons

Goals

» CSO (Commercial Scale-Out)

Lessons
= Blue Gene /P

= Observations on Linux and LTT

» The “next system” - concluding remarks

Monitoring Distributed Systems for Diagnostic Purposes

© 2008 IBM Corporation

IBM Research

Introduction

= In scientific/technical computing, parallel processing
became mainstream in the 80’s

= Since the early 90’s there has been a strong move of
commercial computing away from single-processor
machines to multi-processor systems, as the latter
became more cost efficient

= Two different approaches to multiprocessors:
— Scale-up: large shared-memory machines
— Scale-out: clusters of interconnected smaller machines

Euro-Par 2007 — Rennes, France 31-AUG-2007 © 2007 IBM Corporation

IBM Research

Introduction

= In scientific/technical computing, parallel processing
became mainstream in the 80’s

= Since the early 90’s there has been a strong move of
commercial computing away from single-processor
machines to multi-processor systems, as the latter
became more cost efficient

= Two different approaches to multiprocessors:
— Scale-up: large shared-memory machines
— Scale-out: clusters of interconnected smaller machines

Euro-Par 2007 — Rennes, France 31-AUG-2007 © 2007 IBM Corporation

IBM Research

Scale-up Scale-out

Euro-Par 2007 — Rennes, France 31-AUG-2007 © 2007 IBM Corporation

| IBM Research

Commercial Scale Out experimental system

—— Fiber Channel
' |BC-Hchassis —— Ethernet

DS4100

Euro-Par 2007 — Rennes, France 31-AUG-2007 © 2007 IBM Corporation

IBM Research

Understanding performance in commercial scale-out

= Two challenges similar to scientific computing:

— Lots of processing elements — lots of trace data: need
technigues to limit data and identify important parts

— Correlate events from different machines — need
synchronized time

= Two challenges unique to commercial:

— Complexity of the software stack — hypervisor, operating
system, Java, middleware, application

— Many threads of execution per processing element —
multiple threads per process and multiple processes per
processor — it is not unusual to see hundreds to thousands
of threads per machine!

Euro-Par 2007 — Rennes, France 31-AUG-2007 © 2007 IBM Corporation

IBM Research

Starting point

= Linux Trace Toolkit Next Generation (LTTng):

— Extracts information from hypervisor to application
— Requires instrumentation but it is uniform across layers
— Low overhead

= Linux Trace Toolkit Viewer (LTTV):

— Merges data collected by each software layer
— Identifies the producer of each event (node, process, thread)
— Classifies the execution context (process, trap, interrupt, system call)

= Enhancements to LTTng:

— PowerPC-specific instrumentation
— Tracing support for Java — addition of thread branding (also LTTV)

= Performance monitoring facility

— Uses hardware performance counters in PowerPC
— ldentified bottlenecks through statistical sampling

Euro-Par 2007 — Rennes, France 31-AUG-2007 © 2007 IBM Corporation

File. Wiew Tools PIngins|

D@ =2 (RO RQAQ[~ ~ x [D

Tracesst |

El wertical

@ wertical

| Process | Brand | FID | PRID | CPU | Birth sec| Birth nsec TRACE| 3
. swapper UNBRAMDED O (] o (] (] o
bash UMBRAMDED 1 (4] o B4EE TB5T5Z2447 0O k
rrigrationf0 UMBRAMDED 2 1 o B458 TFB5T733984 0
ksaftirgdio UMBRAMDED 2 2 o 2458 785754822 0
watchdogio UMNBRAMDED 4 i o 2458 785755939 0
events/0 UNBRAMDED 5 i o 8458 FBETSE98T 0
khelper UMNBRAMNDED & s o 8488 FBSTSTOES 0
kthread UNBRAMDED 127 1 o 8488 TB5T58243 0O
xanwatch UMBRAMDED 130 127 a 2468 FB57e0080 O
xenbus UMBRAMDED 131 127 o B4EE TB57E1247 O
kblackdio UNBRAMDED 1325 127 o] 28458 FB5T7e2225 0
| pdflush UMBRAMDED 200 127 o 2458 FB57e3412 0 LI
Trace Tracefils | CPUID | Ewvent | Facili‘ty| Time (sl | Timeins! | PID | Ewent Description j
| fermplexp3itest fopu Q wprirkk kernel B4E82 T8S71e200 0 kernel vprintk: 8468. 785716200 (fcpu_0), 0, UNMAMED, UNBRANMDED, 0, 0x0, SYSCALL { loglevel = 7, taxt = { Durmping facilty core }, ip= O
frmplexp3itest fcontrolfaciltiss 0 state_durnp_facilty_load core 24:82 TES571787e 0 core. state_durnp_facility_load: 8468.785717876 (Jcontralifacilties_0), 0, UNMAMED, UNMERAMDED, 0, 0x0, SYSCALL { nama = "core", checksy
ftmplexp3ftest fcpu 4] printk kernel B468 785719413 0 kernel.printk: 8468.785719413 (fcpu_0), 0, UMNAMED, UNBRANDED, 0, 0x0, SYSCALL { ip = 0xc000000000218898 }
frmplexp3itest fcpu a wprintk kernel B46E 785719902 0 kernel vprintk: 8468785719902 (/cpu_0), 0, UNMAMED, UNBRANDED, 0, 0x0, SYSCALL { loglevel = 7. text = { Dumping facility timer }, ip =
ftrmplexp3itest fcontrolifacilities O state_dump_facilty_load core 8458 785720949 O core. state_durmp_facility_load: 8468 785720943 (/controlifacilities_0), 0, URNMAMED, UNERAMDED, 0, 0x0, SYSCALL { name = "timer", checks
ftmplexp3itest jcpu (4] printk kernel B4E8 T857Z1368 0O kernel.printk: 8468. 785721368 (fcpu_0), 0, UMNAMED, UMBRAMNDED, 0, 0x0, SYSCALL { ip = 0xc000000000218898 }
ftrplexp3itest fepu o wprintk kernzl B45E 785721857 0 kernel vprintk: 8468. 785721857 (/cpu 0}, 0, UNMAMED, UNERANMDED, 0, 0x0, SYSCALL { loglevel = 7, text = { Dumping facility socket }, ip 5
fErmplexp3itest fcontrolfacilties 0 state_durnp_facility_load core 2468 TE5722765 0 core. state_durmp_facility_load: 8468785722765 (fcontrolifacilities_0), 0, UMMNAMED, UMBRANDED, 0, 0x0, SYSCTALL { narme = "socket", check_
frmplexp3itest fopu Q prirtk kernel 2482 785725210 0 kernel printk: 2468, 785725210 (fcpu_0), O, UNMMAMED, UNMBRAMDED, 0, 0x0, SYSCALL { ip = 0xc0000000002182898 }
frmplexp3itest fcpu a wprintk kernel 24858 785725698 0 kernel vprintk: 8468.785725698 (/cpu_0), 0, UNMAMED, UNBRAMDED, 0, 0x0, SYSCALL { loglevel = 7, text = { Dumping facility mermory }, ig
I o
[Z]ms end:|8469 |:|s|?4340950? |2] ns| Time Inter\-'al:|l

me Frame start: [8468 || 5| 743409507

E [%]ns Current Time: 8468 || 5| 743409507 |2

||'|s

0

Million of cycles

IBM Research

Stall breakdown

CPI breakdown of Nutch Query on 4 CPUs

12000

10000

8000

6000 [T

, [mi .—ﬁ%ﬁ% ﬁ%ﬁf l@ il ﬁl

s other cycles
s jdle cycles
mmmen j-cache miss

1 ===== Branch Miss

other LSU
- ERAT

1 mn reject

mmm d-cache miss
== FPU

{ s FXU

mmmm completed

20 40 60 80 100 120 140
Time (in number of rounds)

6 billion instructions/sec
Non-stall CPI (CPI.): 0.34
Average bundle size: 3

Euro-Par2007 = Rennes, France

% of cycles

100

80

60 r

40 |

20 r

Total CPI breakdown

L

~2 billion completing cycles/sec (20% of total 10 billion)

Average for SPECcpu 2000: 0.35

31-AUG-2007

other
idle
compl
icache
br

‘ fpu

- fxu

— other Isu

= erat
e reject

1 == dcache

© 2007 IBM Corporation

CSO Lessons
= CSO

+ Tracing useful

+ HPCs useful

— Performance monitoring for distributed commercial workloads needs
more work

Handling many small, in terms of CPU usage, tasks
sAutomatic process branding

sInter-machine timer synchronization

cAutomatic idle determination

*Cross machine logical causality

*Tree-based causality

*Selective aggregation of performance data

*Virtualization

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation

Outline

SGlI

rtmon

[l
IH
il

L.'
{

il
ﬁ}iﬂn

Kernel and Cray Unification
Lessons
|

Lessons

Approach, scalability, and use

CPO (Continuous Program Optimization)

PEM (Performance Environment Monitoring)
Lessons

Goals

CSO (Commercial Scale-Out)

Lessons
» Blue Gene / P

= Observations on Linux and LTT

» The “next system” - concluding remarks

Monitoring Distributed Systems for Diagnostic Purposes

© 2008 IBM Corporation

System

BlueGene/P 72 Racks, 72x32x32

Rack Cabled 8x8x16

32 Node Cards

Node Card

(32 chips 4x4x2)
32 compute, 0-1 10 cards

13.9 TF/s

Compute Card 2TB

1 chip, 20
DRAMs

435 GF/s

64 GB
Chip

4 processors

13.6 GF/s

’ 2.0 GB DDR2

13.6 GF/s (4.0GB is an option)

8 MB EDRAM

Performance monitoring unit
in the Blue Gene/P system

= Implements 256 counters, 64bits wide
= 1024 possible counter events

= Monitors 4 processor cores and FPU, L3, L2, snoop filters, torus and
collective network

= Novel architecture
= Hybrid implementation using SRAM arrays
= High density, high capacity on-chip performance monitor unit
= Hybrid architecture
= 12 low order bits of a counter implemented using discrete logic
52 high order bits stored in an SRAM array
SRAM state updated at a reqgular basis under state machine control
Configurable input selection and interrupt
Interrupt indication when the threshold value is reached

43

Hybrid PMU architecture

Interrupt
Incremeft?""Y Arm

essccssconns

.&..&I&..&.

Interrup
—b

Y.y

............

.............

Y.y

Snnnnnnnnans

y.Y.

............

SJUSANQ I191UN0)D

Usage of PMU in BGP

MFLOPS

100%

80% +

60%

40% ~

20%

NAS Parallel Benchmarks - Virtual Node Mode

[

0%

B hmmer-fma

O hmmer-mu It

B hmmer-addsub
O Single div

O 8Single fma

H Single mult

@ Single add,sub

CG

BT

EP

FT

1S

LU

MG

SP

Breakdown of FP operations

Opens countless possibilities —
some usage examples

= Analyze the execution profile for
different compiler optimizations
and infer their effectiveness

= Conclude on the effectiveness of
the various hardware & software
settings to determine the
optimal configuration

= Profile and characterize
workloads for various modes of
operation to achieve maximum
performance on multiple cores

45

Coreprocessor showing program counter on 4 racks

Core Processor

BG/P. Software © 2007 IBM Corporation

IBM Research

Data and Control Flow of HPCS Toolkit

N\ Original
Program))
Bottleneck Discovery Engine

‘ Performance (Data Centric Analysis)
Execution Data Data (Memory,

File Collection BUxAle} }
4 H L2
(pSi gm a) INIESES

Performance Bottleneck
(e.g. Communication
imbalance: Array A)

Program
Information

Modified Program (e.g. Block

cyclic distribution of A) Solution Determination Engine

(Alternate Scenario Prediction)

HPCS Toolkit provides Autonomic Application

Performance Capability.

= Intelligent automation of performance evaluation and decision
system

= Interactive capability with graphical/visual interface always
available, but always optional

Outline

SGl

rtmon

|
1L

]

[l

L'
f

J
il

Kernel and Cray Unification
— Lessons

Approach, scalability, and use
— Lessons

= CPO (Continuous Program Optimization)

PEM (Performance Environment Monitoring)
Lessons

= CSO (Commercial Scale-Out)
— Goals

— Lessons
Blue Gene / P

» Observations on Linux and LTT

Mafjrarine DStribtoar S sten s For Bingnacsta)Darposes

© 2008 IBM Corporation

|
i
I

l
#
i

—_
-
=
=
=
—e
—_

il
‘

vt T
it
=

What is right for Linux and How

Patches versus dynamic points versus markers versus static

One infrastructure versus many

Get performance monitoring community active on lkml

Get nose In tent

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation

Outline

SGl

rtmon

|
1L

]

[l

L'
f

J
il

Kernel and Cray Unification
— Lessons

Approach, scalability, and use
— Lessons

= CPO (Continuous Program Optimization)

PEM (Performance Environment Monitoring)
Lessons

= CSO (Commercial Scale-Out)
— Goals

Lessons

Blue Gene /P

Observations on Linux and LTT

Mafjrarine DStribtoar S sten s For Bingnacsta)Darposes

© 2008 IBM Corporation

The +rat Next System

= Efficient, Flexible tracing

Single unified space over all layers including HW counters
Use static events or event markers

Enable system to trace, gather stats, or callback at event
Allow additional dynamic events

Break into categories and allow dynamic enabling

Provide automatic tool for packaging up data and description
Timer synchronization built into infrastructure

Variable sized events

Non-locking and scalable gathering

Efficient online gathering for more extensive offline analysis

Negligible impact when disabled

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation

The +rat Next System

» Configurable visualization

Ability to add new graphs and have system save view
Pluggable modules to interpret application-specific events
Ability to handle massive (100G +) trace data

*Quick start up
Summary and stats information on selectable portion

Handle multicore, multiprocessor, and distributed data

Handle real-time, scientific, and commercial data

Lots of interesting work left to understand commercial systems
Nice default views

*Time-centric time by process, thread-centric view, statistics,
histogram, event list

Monitoring Distributed Systems for Diagnostic Purposes © 2008 IBM Corporation

