
© 2008 Wind River Systems, Inc.

Wind River Sensor Point Technology

Felix Burton

Monitoring/Tracing Workshop

Jan 29-30, 2008

© 2008 Wind River Systems, Inc.

Sensor Points

• Dynamic instrumentation of functions running on

“live” devices or systems

– Instrument applications written in C or C++

– Instrument kernel, ISRs, and device drivers

– Instrument third-party code

– No pre-instrumentation required

• Software instrumentation modules

– Sensor points written in ANSI-C with custom directives

– No application, kernel, or third-party source code needed

– Same scope as any function in which it is inserted

• Access to local and global variables

• Highly efficient, minimal overhead logging framework

• Minimally intrusive

• Small footprint

Application

Operating

System

SP 1

SP 2

SP 4

SP 3

SP 5

Third-Party

Run-Time

ISR

2

© 2008 Wind River Systems, Inc.3

Major Use Cases

• Dynamically probe running Systems

Ex. Retrieve and modify variables, data and
execution flow

• Capture system state at point of failure

Ex. Eliminate need to reproduce in lab

• Rapidly iterate to isolate root causes

Ex. „What if‟ analysis w/o recompile/restart

• Patch running equipment

Ex. „hot patch‟ to verify fixes before
committing to code base

• Enhance QA process

Ex. Inject faults, Measure performance, Code
coverage, simulate I/O

Application

Operating

System

SP 1

SP 2

SP 4

SP 3

SP 5

Third-Party

Run-Time

ISR

© 2008 Wind River Systems, Inc.

Sensor Point Architecture

Application

Sensor Point 1
Sensor Point Manager

Sensor Point Logging

Log

1

Log

2

Log

3

void foo(int param)

{

int state;

state = globallist[param].state;

if (state < 10)

return state;

return 0;

}

static count = 0;

sensorpoint thread

{

sensorpoint “foo”

{

on_line(5):

log($state, count++)

}

}

1

2

3
• Dynamically instrument

• Enable instrumentation

• Log data

1

2

3

4

© 2008 Wind River Systems, Inc.

Sensor Point Execution Path

Branch to patch Push the stack

Save registers

Load PatchID

Call sensor point

Restore registers

Pop stack

Original instruction

Branch back

Sensor point

{

….

}

foo()

5

© 2008 Wind River Systems, Inc.

Sensor Point Language (1)

• ANSI C with extensions

– Language extensions enable Sensor Points to describe

instrumentation address, and access symbols in the target application

– Sensor Points can include all standard C primitives, such as variable

and function declarations, type definitions, etc

• Sensor Point Directives

– sensorpoint

• The sensorpoint directive describes the context in which subsequent

directives execute

– on_entry

• Specifies Sensor Point address as the entry of a function, a thread or start

of a program (depending on the sensorpoint directive above)

– on_exit

• Specifies the exit of a function, a thread or termination of a program

– on_line and on_offset

• These directives specify a line number or a hexadecimal offset as the

Sensor Point address, within the context of a function

6

© 2008 Wind River Systems, Inc.

Sensor Point Language (2)

• Target expressions allow Sensor Points to reference objects in target

application space

• Example target expressions

– Access Registers

• $$EAX, $$r3 : Access registers EAX or r3.

– Access local and global variables by name

• $myVar: Access variable myVar in the target application name space

– Positional parameters

• $1: Access first of the function call parameters

– Return value

• $0 or $return: Set the return value of target function (only in on_exit)

• Stub Function

– sp_StubRoutine: Skip a function completely (only in on_entry)

• Stack Trace

– sp_PrintTraceback, sp_LogTraceback: Print or log stack trace for the

target function

7

© 2008 Wind River Systems, Inc.

Nesting of Sensor Points

• Sensor Points can be lexically nested.

– The ability to nest Sensor Points can be a very powerful feature

– Sensor Points are nested to control the activation of the Sensor

Points and to control the up-scope visibility of data items

declared in the Sensor Points

• Nesting allows creation of umbrella for nested Sensor

Points.

– The inner Sensor Point is executed only if the enclosing

(umbrella) Sensor Point is active.

8

© 2008 Wind River Systems, Inc.

Logging facilities

• Logging is designed to be highly efficient and minimally

intrusive

– High performance locking mechanism allows multiple threads

to access log buffers with minimum overhead

– Binary logs to maximize efficiency during logging

– Constant data is not logged during execution, instead it is

inserted during log formatting

– Simultaneous writing and reading while maintaining data

integrity

– Built-in logging of context information (thread id, time-stamp)

for effective log analysis

• High precision timer (ns) is used when available

• Easy to use log visualization tool

9

© 2008 Wind River Systems, Inc.

Challenges

• System integration

• Reliable stack walk

• Common log framework

• Variable length instruction patching

10

