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Sensor Points

• Dynamic instrumentation of functions running on 

“live” devices or systems

– Instrument applications written in C or C++

– Instrument kernel, ISRs, and device drivers

– Instrument third-party code

– No pre-instrumentation required

• Software instrumentation modules

– Sensor points written in ANSI-C with custom directives

– No application, kernel, or third-party source code needed

– Same scope as any function in which it is inserted

• Access to local and global variables

• Highly efficient, minimal overhead logging framework

• Minimally intrusive

• Small footprint
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Major Use Cases

• Dynamically probe running Systems

Ex. Retrieve and modify variables, data and 
execution flow

• Capture system state at point of failure

Ex. Eliminate need to reproduce in lab

• Rapidly iterate to isolate root causes

Ex. „What if‟ analysis w/o recompile/restart

• Patch running equipment

Ex. „hot patch‟ to verify fixes before 
committing to code base

• Enhance QA process

Ex. Inject faults, Measure performance, Code 
coverage, simulate I/O
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Sensor Point Architecture

Application

Sensor Point 1
Sensor Point Manager

Sensor Point Logging

Log
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void foo(int param)

{

int state;

state = globallist[param].state;

if (state < 10)

return state;

return 0;

}

static count = 0;

sensorpoint thread

{

sensorpoint “foo”

{

on_line(5):

log($state, count++)

}

}
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• Dynamically instrument

• Enable instrumentation

• Log data
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Sensor Point Execution Path

Branch to patch Push the stack

Save registers

Load PatchID

Call sensor point

Restore registers

Pop stack

Original instruction

Branch back

Sensor point

{

….

}

foo( )
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Sensor Point Language (1)

• ANSI C with extensions

– Language extensions enable Sensor Points to describe 

instrumentation address, and access symbols in the target application

– Sensor Points can include all standard C primitives, such as variable 

and function declarations, type definitions, etc

• Sensor Point Directives

– sensorpoint

• The sensorpoint directive describes the context in which subsequent 

directives execute

– on_entry

• Specifies Sensor Point address as the entry of a function, a thread or start 

of a program (depending on the sensorpoint directive above)

– on_exit

• Specifies the exit of a function, a thread or termination of a program

– on_line and on_offset

• These directives specify a line number or a hexadecimal offset as the 

Sensor Point address, within the context of a function
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Sensor Point Language (2)

• Target expressions allow Sensor Points to reference objects in target 

application space

• Example target expressions

– Access Registers

• $$EAX, $$r3 : Access registers EAX or r3.

– Access local and global variables by name

• $myVar: Access variable myVar in the target application name space

– Positional parameters

• $1: Access first of the function call parameters

– Return value

• $0 or $return: Set the return value of target function (only in on_exit)

• Stub Function

– sp_StubRoutine: Skip a function completely (only in on_entry)

• Stack Trace

– sp_PrintTraceback, sp_LogTraceback: Print or log stack trace for the 

target function
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Nesting of Sensor Points

• Sensor Points can be lexically nested.

– The ability to nest Sensor Points can be a very powerful feature

– Sensor Points are nested to control the activation of the Sensor 

Points and to control the up-scope visibility of data items 

declared in the Sensor Points

• Nesting allows creation of umbrella for nested Sensor 

Points. 

– The inner Sensor Point is executed only if the enclosing 

(umbrella) Sensor Point is active.
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Logging facilities

• Logging is designed to be highly efficient and minimally 

intrusive

– High performance locking mechanism allows multiple threads 

to access log buffers with minimum overhead

– Binary logs to maximize efficiency during logging

– Constant data is not logged during execution, instead it is 

inserted during log formatting

– Simultaneous writing and reading while maintaining data 

integrity

– Built-in logging of context information (thread id, time-stamp) 

for effective log analysis

• High precision timer (ns) is used when available

• Easy to use log visualization tool
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Challenges

• System integration

• Reliable stack walk

• Common log framework

• Variable length instruction patching
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