
  

systemtap

An integration platform for
Linux system-wide probing.

Frank Ch. Eigler <fche@redhat.com>
2008-01-28

mailto:fche@redhat.com


  

goal

● Provide debugger-quality visibility into entire 
running system, ideally any variable at any 
statement in any thread.

● Do not require recompilation, restart, or 
embedded instrumentation (though support it if 
present).

● Run fast, non-intrusively, to minimize probe 
effect and gross disruption.

● Configure by small domain-specific scripting 
language, avoid hard-coded assumptions about 
what information might be interesting.



  

a taste*
probe syscall.* {

if (execname()==”bash”) log(name . “ “ . argstr))
}
probe kernel.mark(“context_switch”) {

residency[$arg2, cpu()] ++
}
probe program(“/lib/glibc.so”).function(“malloc”) {

if ($size > 1024*1024) log(“hog!”)
}
probe timer.profile {

hotfuncs[execname(), probefunc()] <<< 1
}
global residency, hotfuncs

* some of these will be only supported in near future



  

++++++ solution scope ------

● Supports need to 
collect data from 
places with disparate 
or nonexistent 
compiled-in 
instrumentation.

● Supports need to 
filter, aggregate, act 
on data in situ.

● Does not currently 
deal with distributed 
systems.

● Supports arbitrary 
textual or binary 
output, but has no 
trace browser GUI 
yet.

● Single-platform multi-
architecture Linux 
free software.



  

implementation

● Compile phase:
– Parse probe script, resolve refs to tapset library.

– Process external information to resolve all probes: 
DWARF debugging information, marker lists, 
symbol tables, as needed.

– Translate to safety-enhanced C kernel module.

– Invoke kernel build system to compile into loadable 
kernel object.  Cache it for script reruns.

● Run phase:
– Load module.  Quickly copy trace buffers to user 

space.  Unload module.



  

future

● Finish key features previewed above.
● Investigate distributed operation for probe script 

compilation, launching, and data collection.
● Simplify deployment (prerequisites, user 

privileges).
● Investigate ways to interoperate with other 

reporting/visualization tools.
● Take guidance (and assistance!) for distributed 

operation.



  

 

  1

systemtap

An integration platform for
Linux system-wide probing.

Frank Ch. Eigler <fche@redhat.com>
2008-01-28



  

 

  2

goal

● Provide debugger-quality visibility into entire 
running system, ideally any variable at any 
statement in any thread.

● Do not require recompilation, restart, or 
embedded instrumentation (though support it if 
present).

● Run fast, non-intrusively, to minimize probe 
effect and gross disruption.

● Configure by small domain-specific scripting 
language, avoid hard-coded assumptions about 
what information might be interesting.



  

 

  3

a taste*
probe syscall.* {

if (execname()==”bash”) log(name . “ “ . argstr))
}
probe kernel.mark(“context_switch”) {

residency[$arg2, cpu()] ++
}
probe program(“/lib/glibc.so”).function(“malloc”) {

if ($size > 1024*1024) log(“hog!”)
}
probe timer.profile {

hotfuncs[execname(), probefunc()] <<< 1
}
global residency, hotfuncs

* some of these will be only supported in near future

The first probe produces a one-line tracemessage for each system call performed by any bash process in the 
system.  The “name” and “argstr” variables are filled in to a textual representation of the system call name 
and its argument list.  This latter part is done by the “tapset” library – a bunch of scripts shipped with 
systemtap that define higher level probes and variables from lower level ones.

The second probe attaches to linux kernel markers.  Parameters for markers are passed to the script as $arg1, 
$arg2, etc., with some limited type-conversion (char* -> strings, everything else -> 64-bit numbers).  The 
residency lookup table, indexed by the destination thread-id and the cpu id will collect counts of dispatches 
of a given thread on a given CPU.  This lookup table can be traversed and printed any time.

The third probe demonstrates one flavour of (future) user-space probes.  This one would intercept glibc's 
malloc entry point, across all processes in the system.  $size is a parameter to the malloc function, as 
located on the stack or in the registers.  (Its runtime whereabouts are located by search through the glibc 
debugging data.)

The fourth probe demonstrates elementary profiling.  Probefunc() returns a PC-to-function mapping for the 
current thread (though at the moment it applies only to kernel space).  The “<<<” operation constitutes the 
collection of a statistical sample into an aggregation, from which histograms and other statistics can be 
trivially extracted and printed.  This is SMP-friendly data structure.

The global declarations identify the two arrays as global (persistent for the duration of the script run, shared 
(with automated locking) amongst all probes.  All types are inferred and checked.  General control flow 
(loops, recursion, ...) are supported.



  

 

  4

++++++ solution scope ------

● Supports need to 
collect data from 
places with disparate 
or nonexistent 
compiled-in 
instrumentation.

● Supports need to 
filter, aggregate, act 
on data in situ.

● Does not currently 
deal with distributed 
systems.

● Supports arbitrary 
textual or binary 
output, but has no 
trace browser GUI 
yet.

● Single-platform multi-
architecture Linux 
free software.

A key point with systemtap is that it is agnostic with respect to where its data comes from.  It is not tied to a 
single instrumentation mechanism – be it kprobes, kernel markers, /proc synthetic files, and other usable 
hooks.  It's not hard to extend to support other instrumentation type APIs.

The other key point is that we view instrumentation as being larger than “just” tracing for later offline analysis.  
With systemtap, one can process the event data right there to generate statistics.  One can compare 
values to collected statistics and act on changes right at that moment.  One can vary the type and quantity 
of data being gathered as the probing process continues.  If the script author wishes, of course systemtap 
can create gigabytes too.  They have a choice.



  

 

  5

implementation

● Compile phase:
– Parse probe script, resolve refs to tapset library.
– Process external information to resolve all probes: 

DWARF debugging information, marker lists, 
symbol tables, as needed.

– Translate to safety-enhanced C kernel module.
– Invoke kernel build system to compile into loadable 

kernel object.  Cache it for script reruns.

● Run phase:
– Load module.  Quickly copy trace buffers to user 

space.  Unload module.

There exist natural concerns abut this implementation strategy.

The most intuitive one is ... “are you seriously running this in the kernel?  Isn't that unsafe?”.

Yes, it could be unsafe, but we work hard to keep it safe.  The generated C code is highly  stylized and fitted 
with numerous error and self- checks, locks (with timeouts), and aims to limit both space and time 
consumption at run time. The generated C code is open for inspection.   And it becomes  optimized 
machine code, so overall it runs very fast, even with the checks.

The second question is ... “does a user have to be root?”.

Decreasingly so.  We support sudo as well as a group-membership-based setuid method for semi-privileged 
people to run systemtap scripts.  We have a facility to let unprivileged users run only modules that 
someone else built/wrote.  We're working on relaxing this further.

Trace buffers can be kept per-cpu or merged within the kernel.  Trace buffers can be disconnected to allow a 
type of “flight recorder” operation, and can even be pulled out of kernel crash dump images.



  

 

  6

future

● Finish key features previewed above.
● Investigate distributed operation for probe script 

compilation, launching, and data collection.
● Simplify deployment (prerequisites, user 

privileges).
● Investigate ways to interoperate with other 

reporting/visualization tools.
● Take guidance (and assistance!) for distributed 

operation.


