
Developing OS-agnostic visualization tools
using System Viewer and LTTng as an example

Andrew McDermott

Wind River, UK

29-30th January 2008

mailto:andrew.mcdermott@windriver.com

2

Overview

• What is System Viewer?
• The challenges in extending the tool to LTTng
• Some solutions to those challenges
• Conclusions
• Questions?

• Demo

3

What is System Viewer?

• Runtime instrumentation
– Static compile-time instrumentation for core OS features/facilities

• semaphores, message queues, signals, tasks, timers, user events, …

• Runtime Configuration/Data Collection
– Configure: buffer sizes, buffer mode, timestamp mode, …
– Collection: socket based, file system based (NFS)

• Runtime Triggering
– Allows programmatic capture of events

• Visualization tool
– Displays events over time

– Displays the interaction between tasks, interrupts and system objects

4

Types of problems it helps to solve?

• Deadlocks
• Race conditions
• Problems related to reentrancy
• Problems related with priority settings

– And priority inversion

• Timing problems
– Why is my task not running?

• Load and CPU/Core utilization
• System exploration

– Using user defined events

5

System Viewer Workflow (VxWorks)

• Configure the system with instrumentation support
– By default just context switch is instrumented
– Optionally select “libraries” of additional instrumentation:

• VxWorks:
– Tasks, Semaphores, Message Queues, Watchdogs, …

• Configure the target
– Buffer size
– Buffer wrapping mode

• Start logging, stop logging and upload the log
– The uploaded log is called the EVENT LOG
– Historically this is has a “.WVR” file extension

• The visualization tools present a view of the .WVR file

6

System Viewer’s Log Viewer

Events

Context State
(Pended)

Events

Contexts
(Interrupts

&
Tasks)

TIME

7

Architectural View

• Collector reads events from
the .wvr file

• Events are passed to a
“parser” for further
interpretation

• The parser optionally inserts
the events into the Event
database

• When all events have been
consumed the log viewer
renders the log

.WVR

Event

database

Event Collector

VxWorks

Parser

JNI/C++ boundary

Log Viewer

(Java/Swing)

.xml

8

What is in the Event database?

• It is a model that maintains a set of entities and relationships:
– CONTEXTS

– thread, task, interrupt, process, etc

– EVENTS
– These are “things” that happened and are attributed to a context (e.g., semTake,

intEnter, userEvent, etc)

– STATES
– These represent the state of the “context” when the event occurred (e.g., Running,

Pended, Interruptible, etc)

– PARAMETERS
– Attributes of an event. e.g., recurseCount, fd, address, PC, …

– (There are 15 entities in total)

• The model strives to be OS-agnostic
• We have had success rendering VxWorks, Linux, and … event logs

• Often referred to as the “eventbase”

9

The scope of the Event database

• System Viewer’s Log Viewer and/or the Eventbase is
NOT a general purpose viewer

• The primary focus and scope of the Eventbase schema is
to enable and support time-based trace systems

• It is a bespoke tool

• But If you conform to the Eventbase model you’ll get
visualization for “free”

10

How do we extend SV to LTTng?

• So we have this great visualization tool but how do we extend it to
other trace formats?

• It turns out that it is really EASY!
– We convert the LTT trace format to .WVR format
– We write a new parser which inserts events, states, etc into the event

database
• There is some additional XML files & icons to be provided

– We get visualization for free!

• What about other trace systems?

– Using this model we have successfully done:
• VxWorks 5.x, VxWorks 6.x, VxWorks AE653, BSD/OS, LTT classic, C++

11

Supporting other trace formats

Event

database

Event Collector

Parser

now dynamically loaded

Eventbase model

(JNI/C++ boundary)

Log Viewer

(Java/Swing)

Custom
Trace Format

VxWorks 5.x
Parser

VxWorks AE653
Parser

VxWorks 6.x
Parser

BSD/OS
Parser

LTT Classic
Parser

LTTng
Parser

Other?

Other?

XML

.WVR

12

Additional Challenges supporting LTTng

• Specific LTTng challenges:
– LTTng has its own means of configuration and data collection

• We have modified the lttctl and lttd programs

– LTTng only targets and compiles on Linux
• Note: The log decoding API (libltt.so) only compiles on Linux

– LTTng changes rapidly
• We don’t or can’t change the tool for every (minor) release

• We don’t want to chase the bleeding edge either

– LTTng can generate huge data sets
• On a modern x86 desktop it is possible to collect gigabytes of data very

quickly

13

Architectural Growing Pains

• Using the .WVR format works but there are limitations to the
current model and the underlying architecture

• Monolithic application
– The UI and the data is one large program

• The event database is not a persistence model
– Everything is in memory

• It is not scalable to large data sets
– LTT logs get bigger much quicker than VxWorks logs

• No clear separation between the UI and the data model
– There is a restricted Java API for programmatic access to the .WVR

• The event database is not mutable once data has been entered

• The .WVR file format is beginning to show its vintage
– Timestamps are 32-bit only, 64-bit values were strings…

14

Architectural Goals (1/2)

• We want to visualize new operating or tracing systems
– But we don’t want to rewrite it for each new operating systems

• We want to change as little as possible so that:
– Faster time to market for new systems
– The core product becomes extremely stable over time
– There is consistency for end users

– We don’t have to retest the UI layers over and over

• We need to handle large data sets
– SMP systems are larger still

• We need to have a persistent and common data format
• We want the event database to be mutable
• We need a language-independent means of making ad-hoc queries
• We want 3rd parties and other internal groups to be able to build on

the work we have done

15

Architectural Goals (2/2)

• Everything in orange is OS or trace
agnostic

• Everything in red is OS or trace
specific

• Different trace systems insert their
data into the event database – this
is known as normalization

• The event database should be
mutable

Log Viewer

User Interface
(written in Java)

Event database &

Common Schema
supports persistence

decoupled from the UIVxWorks

LTTng

JVM

other? Normalizatio
n

16

The New Relational Event Database

• The Eventbase and Log Viewer has since been reworked
to use SQLite as its database engine
– The SQLite website has a long list of features but these are the

most important to us

– Self-contained: no external dependencies
– Sources are in the public domain. Use for any purpose.
– In process – it is not a client/server database
– Zero-configuration - no setup or administration needed
– Faster than popular client/server database engines for most common

operations
– A complete database is stored in a single disk file
– Database files can be freely shared between machines with different

byte orders.

http://www.sqlite.org/

17

Eventbase (SQLite) Performance (1/2)

• SQLite is “fast”, but how “fast” ?
– There are a number of performance metrics to consider

• INSERT performance
• QUERY performance
• INDEX generation

• INSERT performance
– To convert a 8.5MB VxWorks .wvr file takes ~44s
– The converted database has ~4.5 million rows
– Which is ~100,000 rows per second
– To get these numbers we modified SQLite

• To not use the journal file
• To increase the default page size

– Without these changes the conversion takes ~60s.

• QUERY performance
– We found query performance generally excellent and on a par with our

home grown database

18

Eventbase (SQLite) Performance (2/2)

• INDEX performance is not great
– To add indices to some of the tables, notably the events, states

and parameters can double log conversion time
– This appears to be the general case; if it takes 100s to convert

without using indices, it takes another 50s to create the indices
– This is much complained about on the SQLite mailing list

• To mitigate the INDEX creation time we reworked the Log
Viewer and the schema to not require indices
– Today all queries run without the need for indices
– It’s possible to add indices to a converted database at a later

date

19

The advantages of SQLite

• It provides a clear separation between presentation and data
• We’ve stopped writing our own database engine
• We no longer have to provide a programmable API to access the

eventbase
– SQLite has bindings for many languages:

• Perl, Python, PHP, C, C++, Java, Lua, Lisp

• There are other UI orientated tools for managing/using a SQLite
database over and above the sqlite command line interface

• It is both extensible and very malleable
– By using SQL statements existing data can be added or removed

• Customers can write their own queries, run their own data-mining
operations all without having to wait for Wind River to support
such features

• SQL is a generalized and well understood language
• Can be used to prototype new analyses outside of the analysis

developmental team

http://www.zeitungsjunge.de/delphi/sqlitespy/index.htm

20

Where SQLite doesn’t scale

• The size of a SQLite database is cause for concern
– Disk may be cheap, but sending a large database to support@windriver

.com has a cost
– Converting a 8.5MB VxWorks log produces a 115MB SQLite database
– We have not looked at optimizing the file size

• Our customers still send us .WVR files

• Creating INDICES take too long
– BUT appropriate indices make QUERIES run extremely quickly!

• Concurrency
– Thought this is not a concern for the Log Viewer

• INSERT performance needs to be much quicker
– Converting large event logs still takes way too long

mailto:support@windriver.com
mailto:support@windriver.com
mailto:support@windriver.com

21

lib
sq

lite3.so
SQLite’s Virtual Tables aid performance

• The virtual table mechanism
allows us to extend SQLite
without changing the client

• From the perspective of a SQL
statement, the virtual table
object looks like any other
table.

– Behind the scenes, queries to
a virtual table invoke custom
methods instead of reading
and writing to the database
file.

• We now populate the database
by writing directly to the file
system, bypassing SQLite

– INSERT speed is now bounded
by file system write

Custom

virtual table
implementation

SQLite

API

Events States Params

SQLite Clients/
Queries

DB

22

Virtual Table Performance (1/2)

• Log conversion times are much improved

Log Size Without vtables With vtables Quicker
(MB) (seconds) (seconds)

2.7 4.60 1.28 72%
6.1 9.45 2.49 74%
6.7 8.68 2.21 75%
9.7 12.20 2.91 76%
12 14.66 3.96 73%
13 15.44 3.83 75%
17 21.77 5.35 75%
30 37.91 8.62 77%
93 134.60 29.77 78%

23

Virtual Table Performance (2/2)

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

Log size (MB)

T
im

e
 (

s
e

c
o

n
d

s
)

Without vtables

With vtables

• How does it scale?
– The trend looks good!

24

Conclusions

• The key is splitting data from the presentation layers
– We convert from an arbitrary data format to a common format
– The UI then need only understand one model
– The UI makes little or no interpretation of the data

• It is a thin client

– The split now allows us to port the Log Viewer to Eclipse

• By using SQLite
– We now have persistence which aids scalability
– We now have a standardized and commoditized data engine
– SQL is well understood
– Access to the data is either via SQL or a language binding
– Virtual tables makes SQLite viable for large data sets

• Extensible by 3rd parties
– We want 3rd parties or customers to use the data in a way we never

imagined or conceived

25

Future

• We are extending the database approach to other Wind
River analysis tools
– We have already done Memscope

• The future is exploiting the database to provide “New
Analysis” views – this is where the real value now lies
– CPU utilization
– System Load
– Memory Usage
– Better search capabilities

• Intangibles
– Ease of development
– Regression testing

26

Questions?

27

Log Viewer Demo

