Developing OS-agnostic visualization tools
using System Viewer and LTTng as an example

Wind River, UK
29-30%* January 2008

WIND RIVER

mailto:andrew.mcdermott@windriver.com

Overview

What is System Viewer?

The challenges in extending the tool to LTTng
Some solutions to those challenges
Conclusions

Questions?

Demo

WIND RIVER

What is System Viewer?

Runtime instrumentation
— Static compile-time instrumentation for core OS features/facilities

* semaphores, message queues, signals, tasks, timers, user events, ...

Runtime Configuration/Data Collection
— Configure: buffer sizes, buffer mode, timestamp mode, ...
— Collection: socket based, file system based (NFS)

Runtime Triggering
— Allows programmatic capture of events

Visualization tool

— Displays events over time
— Displays the interaction between tasks, interrupts and system objects

WIND RIVER

Types of problems it helps to solve?

Deadlocks
Race conditions
Problems related to reentrancy

Problems related with priority settings
— And priority inversion

Timing problems
— Why is my task not running?

Load and CPU/Core utilization

System exploration
— Using user defined events

WIND RIVER

System Viewer Workflow (VxWorks)

Configure the system with instrumentation support
— By default just context switch is instrumented

— Optionally select “libraries” of additional instrumentation:

* VxWorks:
— Tasks, Semaphores, Message Queues, Watchdogs, ...

Configure the target
— Buffer size
— Buffer wrapping mode

Start logging, stop logging and upload the log
— The uploaded log is called the EVENT LOG
— Historically this is has a “.WVR?” file extension

The visualization tools present a view of the .WVR file

WIND RIVER

System Viewer’s Log Viewer

J-i ClammwvxColor wvr — Wind River System Viewer

File Yiew Bookmarks Tools Help

& —= = | [l &l Events =z 44 b 4 b @ & @5 -] =k 2 < |
A4 4 H LN

T2 Event Graph 5:3] = Event Tahle 33]

=1 Fa wnColorowyr (Wawiorks S5.4.20
= Interrupts
= Interrupts e
PR i _ Events Events
—- = Tasks
= ExcTask (Ox3dNMS)
= EviTask (OxZas4=8
=» tidbTask (Ox362434) .] =]
P t14 (3629543 O O Ok Ok OBy e
= t15 (OxE62054)
= t16 (0x362954)
=, t17 (0x362954)
= fetTask (Ox3d3=21c)
= fodel (0x3S5d7bo)
= Nodez (Ox35d224)

= ode3 (0x35ccos)

= thoded (Dx3Sc70C) Co ntexts
= todeS (Dx35c180)
(Interrupts

B Hode? (Dx2Sheaa) &

= toded (0xI5H0dc TaSkS)

= foded (0x3Sabs0)

= todes (0x3Shbfd)

Context State
(Pended)

= DemoCr (0x359c0<4)
=

[ZXT T [168.15ms - 157.462ms

[T

6 WIND RIVER

Architectural View

Collector reads events from
the .wvr file

Events are passed to a

Log Viewer
(Java/Swing)

A

Ll

“parser” for further
interpretation

JNI/C++ boundary

The parser optionally inserts
the events into the Event
database

Event
database

When all events have been
consumed the log viewer

|
VxWorks
I * Parser

renders the log m\

w3

L

‘ Event Collector

WIND RIVER

What is in the Event database?

* Itis a model that maintains a set of entities and relationships:
— CONTEXTS

— thread, task, interrupt, process, etc

— EVENTS

— These are “things” that happened and are attributed to a context (e.g., semTake,
intEnter, userEvent, etc)

— STATES

— These represent the state of the “context” when the event occurred (e.g., Running,
Pended, Interruptible, etc)

— PARAMETERS

— Attributes of an event. e.g., recurseCount, fd, address, PC, ...

— (There are 15 entities in total)

« The model strives to be OS-agnostic
* We have had success rendering VxWorks, Linux, and ... event logs

 Often referred to as the “eventbase”

8 WIND RIVER

The scope of the Event database

System Viewer’s Log Viewer and/or the Eventbase is
NOT a general purpose viewer

The primary focus and scope of the Eventbase schema is
to enable and support time-based trace systems

It is a bespoke tool

But If you conform to the Eventbase model you’ll get
visualization for “free”

WIND RIVER

10

How do we extend SV to LTTng?

So we have this great visualization tool but how do we extend it to
other trace formats?

It turns out that it is really EASY!
— We convert the LTT trace format to .WVR format

— We write a new parser which inserts events, states, etc into the event
database

* There is some additional XML files & icons to be provided
— We get visualization for free!

What about other trace systems?

— Using this model we have successfully done:
* VxWorks 5.x, VxWorks 6.x, VxWorks AE653, BSD/OS, LTT classic, C++

WIND RIVER

Supporting other trace formats

VxWorks 5.x LTT Classic
Parser Parser

Log Viewer
(Java/Swing)

VxWorks 6.x
Parser

LTTng
Parser

Eventbase model
(JNI/C++ boundary)

Other?

VxWorks AE653
Parser

Event
database

Parser
now dynamically loaded

A

BSD/OS
Parser
D
A"

Custom
Trace Format

Event Collector

o

11

WIND RIVER

Additional Challenges supporting LTTng

« Specific LTTng challenges:

— LTTng has its own means of configuration and data collection
* We have modified the lttctl and Ittd programs

— LTTng only targets and compiles on Linux
* Note: The log decoding API (libltt.so) only compiles on Linux

— LTTng changes rapidly
* We don’t or can’t change the tool for every (minor) release
* We don’t want to chase the bleeding edge either

— LTTng can generate huge data sets

* On a modern x86 desktop it is possible to collect gigabytes of data very
quickly

12 WIND RIVER

13

Architectural Growing Pains

Using the .WVR format works but there are limitations to the
current model and the underlying architecture

Monolithic application

— The Ul and the data is one large program
The event database is not a persistence model

— Everything is in memory
It is not scalable to large data sets

— LTT logs get bigger much quicker than VxWorks logs
No clear separation between the Ul and the data model

— There is a restricted Java API for programmatic access to the .WVR
The event database is not mutable once data has been entered
The .WVR file format is beginning to show its vintage

— Timestamps are 32-bit only, 64-bit values were strings...

WIND RIVER

Architectural Goals (1/2)

« We want to visualize new operating or tracing systems

— But we don’t want to rewrite it for each new operating systems
« We want to change as little as possible so that:

— Faster time to market for new systems

— The core product becomes extremely stable over time

— There is consistency for end users

— We don’t have to retest the Ul layers over and over

 We need to handle large data sets
— SMP systems are larger still

 We need to have a persistent and common data format
« We want the event database to be mutable
 We need a language-independent means of making ad-hoc queries

« We want 3" parties and other internal groups to be able to build on
the work we have done

14 WIND RIVER

15

Architectural Goals (2/2)

Everything in orange is OS or trace
agnostic

Everything in red is OS or trace
specific

Different trace systems insert their

data into the event database — this
is known as normalization

The event database should be
mutable

VxWorks

L

? 4
LTTng ‘0 Normalizatio
. n

WIND RIVER

The New Relational Event Database

 The Eventbase and Log Viewer has since been reworked
to use as its database engine

16

The SQL.ite website has a long list of features but these are the
most important to us

Self-contained: no external dependencies

Sources are in the public domain. Use for any purpose.
In process — it is not a client/server database
Zero-configuration - no setup or administration needed

Faster than popular client/server database engines for most common
operations

A complete database is stored in a single disk file

Database files can be freely shared between machines with different
byte orders.

WIND RIVER

http://www.sqlite.org/

17

Eventbase (SQL.ite) Performance (1/2)

SQLite is “fast”, but how “fast” ?

— There are a number of performance metrics to consider
* INSERT performance
* QUERY performance
« INDEX generation

INSERT performance

— To convert a 8.5MB VxWorks .wvr file takes ~44s

— The converted database has ~4.5 million rows

— Which is ~100,000 rows per second

— To get these numbers we modified SQLite
* To not use the journal file

* To increase the default page size
— Without these changes the conversion takes ~60s.

QUERY performance

— We found query performance generally excellent and on a par with our
home grown database

WIND RIVER

Eventbase (SQL.ite) Performance (2/2)

* INDEX performance is not great

— To add indices to some of the tables, notably the events, states
and parameters can double log conversion time

— This appears to be the general case; if it takes 100s to convert
without using indices, it takes another 50s to create the indices

— This is much complained about on the SQLite mailing list

* To mitigate the INDEX creation time we reworked the Log
Viewer and the schema to not require indices
— Today all queries run without the need for indices

— It’s possible to add indices to a converted database at a later
date

18 WIND RIVER

19

The advantages of SQL.ite

It provides a clear separation between presentation and data
We’ve stopped writing our own database engine

We no longer have to provide a programmable API to access the
eventbase

— SQLite has bindings for many languages:
* Perl, Python, PHP, C, C++, Java, Lua, Lisp

There are other Ul orientated for managing/using a SQL.ite
database over and above the sqglite command line interface

It is both extensible and very malleable
— By using SQL statements existing data can be added or removed

Customers can write their own queries, run their own data-mining
operations all without having to wait for Wind River to support
such features

SQL is a generalized and well understood language

Can be used to prototype new analyses outside of the analysis
developmental team

WIND RIVER

http://www.zeitungsjunge.de/delphi/sqlitespy/index.htm

20

Where SQL.ite doesn’t scale

The size of a SQL.ite database is cause for concern

— Disk may be cheap, but sending a large database to
has a cost

— Converting a 8.5MB VxWorks log produces a 115MB SQL.ite database

— We have not looked at optimizing the file size
e Qur customers still send us .WVR files

Creating INDICES take too long
— BUT appropriate indices make QUERIES run extremely quickly!

Concurrency
— Thought this is not a concern for the Log Viewer

INSERT performance needs to be much quicker
— Converting large event logs still takes way too long

WIND RIVER

mailto:support@windriver.com
mailto:support@windriver.com
mailto:support@windriver.com

SQL.ite’s Virtual Tables aid performance

 The virtual table mechanism

allows us to extend SQLite SQLite Clients/

without changing the client Queries
* From the perspective of a SQL ,
statement, the virtual table SQLite
object looks like any other AP =
table. o
— Behind the scenes, queries to Custom Q
a virtual table invoke custom . =T
methods instead of reading virtual table ®
and writing to the database implementation w
file. 8

 We now populate the database
by writing directly to the file
system, bypassing SQL.ite
— INSERT speed is nhow bounded
by file system write

States

21 WIND RIVER

Virtual Table Performance (1/2)

* Log conversion times are much improved

Log Size Without vtables With vtables Quicker
(MB) (seconds) (seconds)
72%
74%
75%
76%
73%
75%
75%
77%
78%

WIND RIVER

23

Virtual Table Performance (2/2)

How does it scale?
— The trend looks good!

Time (second:s

160
140 -
120 -
100 -
80 -
60
40 -
20 -

0

/
/
/
/
/ e

Log size (MB)

- \\/ithout Vtables
— \\ith vtables

WIND RIVER

24

Conclusions

The key is splitting data from the presentation layers
— We convert from an arbitrary data format to a common format

The Ul then need only understand one model

The Ul makes little or no interpretation of the data
* Itis athin client

The split now allows us to port the Log Viewer to Eclipse

By using SQL.ite

We now have persistence which aids scalability

We now have a standardized and commoditized data engine

SQL is well understood
Access to the data is either via SQL or a language binding
Virtual tables makes SQL.ite viable for large data sets

Extensible by 3 parties
— We want 3" parties or customers to use the data in a way we never

imagined or conceived

WIND RIVER

25

Future

We are extending the database approach to other Wind
River analysis tools

— We have already done Memscope

The future is exploiting the database to provide “New
Analysis” views — this is where the real value now lies
— CPU utilization

— System Load

— Memory Usage

— Better search capabilities

Intangibles
— Ease of development
— Regression testing

WIND RIVER

26

Questions?

WIND RIVER

27

Log Viewer Demo

WIND RIVER

