
1

ZealCore
Embedded Solutions

Accelerated Troubleshooting

Record Play

����������������

Record Play

Henrik Thane, Ph.D.,

Founder
SVP Market Development

ZealCore Focus

Monitoring,
Debugging,

Testing of:

Embedded
Multi-tasking
Real-Time
Multi-Core
Distributed Systems

����������������

Distributed Systems…
Used in

The Field / Deployed
The Lab / Pre-deployment

2

A���� ����C��� E������� S��������

Spin-off from the pioneering research work
performed at the Mälardalen Real-Time
Research Centre in Västerås, and the
Royal Institute of Technology in
S S

About ZealCore

Stockholm, Sweden

Recognized by Gartner as Cool Vendor:

����������������

Award by MIS, 2005
“One of top 10 risings stars in the
world”.

Emerging Trends and Technologies

����������������

Tackles the difficulty of
understanding the behavior

Our Research and Technology

of complex embedded systems

We provide solutions for
Observability
Reproducibility

Questions we try to answer

����������������

– What information is of interest?
– How to extract the information?
– How to analyze the information?
– How to manage the information?

3

‘The radar system of HMS

Fact: The Inadequacy of Verification

Incorrect specifications cause over 50% of all failures
[N. G. Leveson. Safeware System, Safety and Computers. Addison Wesley 1995.]

The radar system of HMS
Sheffield identified an incoming
Exocet missile as non-Soviet and
thus friendly. No alarm sounded.
The Ship sunk with substantial
losses of life.’
[ACM Software Engineering Notes , Vol.8, No. 3.]

����������������

All wrong despite V&V

We need means to see what happens out there…

Difficult to understand the behavior
of complex embedded systems

Fact: Debugging

Difficult to observe behavior
Difficult to reproduce behavior

����������������

4

Fact: Debugging

Fault Identification
(Debugging)

Non Stop
System keeps running even if software
stops

Indeterminism
Rerunning a program gives different
results
Hard to reproduce failures

Probe-effect (Heisenbugs)

Wheel
speed

Apply

Computer

����������������

Probe-effect (Heisenbugs)
Instrumentation to record behavior
changes behavior
Bugs hide when we are looking for them

pp y
brake force

Software controlled ABS

Common Solutions

����������������

5

Observation & Reproducibility Techniques

Hardware features
In-circuit emulators, BDM, ETM, JTAG ports, logic analyzers
Usually do not scale to deployed systems. Expensive to
“Insure” target with hardware recorders.

Using a symbolic source code debuggerUsing a symbolic source code debugger
Watches
Problem: Non stop debugging
Problem: Indeterminism

How to reproduce inputs from the field
Problem: Probe-effects

Virtualization/simulators
Non intrusive
Problem: typically only virtualization of computer HW, not
environment, e.g., Dynamics of a Robot
No input from deployed systems.
In some cases lock step simulation – but 50% of failures
come from incorrect specifications.

����������������

come from incorrect specifications.

Software instrumentation
The most common means by which the programmer can
increase the observability and reproducibility
auxiliary outputs, typically in terms of classic “printf()”
statements and storage in logs.

TRACE_1("ROUTE", "gps_ROUTE_R4_Link")

Software Instrumentation Techniques

For Languages with Pre Processors
(C/C++) or Using Aspects

Textual substitution by parser
Textual substitution with macros of the C-
preprocessor

Inclusion/replacement additional library
Trace functions/methods

Log4J (logging package for Java)

Binary wrapping of object code
Dynamic instrumentation of
executable/executing code

ATOM EEL Et h (N d t t)

����������������

ATOM,EEL Etch (Need restart)
DynInst (no restart, no real-time
considerations)
Dynamic Patch/Relink (no restart, real-time
considerations)
WindRiver Sensorpoints

6

Our approach: Record & Playback

Record

Run

Accelerated Troubleshooting
Our Approach:

– Record First
– Analyze Later

Field Trouble Shooting
Lab Trouble Shooting

Test

Runtime Failure

Replay

Failure

����������������

Debug

Solved!

Recording Approach
Embedded Distributed / Multi-Pro / Multi-Core Real-Time Systems

Recording

Efficient Algorithms Utilize Mutual information / Exformation

Static / Dynamic
Instrumentation

Shared logs Multiple logs

•Resource efficient

•Lock Free

•Fault Tolerant

Optimal Resource
Allocation

����������������

Multi-Core Enabled
Recording Infrastructure

7

System Debugging

System Debugging =
Software Monitoring + System Event Processing

A necessary evolution Of
traditional debugging methods
To find and understand complex bugs
Need to fuse & synchronize logs
Need to automate the process
Need to raise the abstraction level

Computer aided bug analysis
Automatic import of several logs and
synchronization

����������������

synchronization
Use graphics/abstractions
Use reverse engineering
Automatic fault identification

The Problem of System Debugging
Current Industrial Situation

Poor Trouble Shooting

Event
log

Probe

Print
Spooler

Process
E ti

General
Non Stop Behavior
Non Determinism

Many logs/recordings
Different formats
Difficult to read and

����������������

Probe
log Execution

log
Difficult to read and
understand
No synchronization

8

System Level Debugger

Our System Debugger Approach

Information FunnelRecorder

System Level Debugger
Import and synchronization of
Logs
Correlation of Data

Automatic Fault Identification
Automatic Trend Analysis

Visualization & Reanimation

Event
log

Probe
log

Print
Spooler

Process
Execution

log

����������������

Visualization & Reanimation
Works on-top of existing tools
Eclipse Based

A S����� L���� D�������

����������������

9

Multiple Node Log Fusion

CPU #1 CPU #2 CPU #3CPU #1 CPU #2 CPU #3

CPU #4 CPU #5 CPU # nn

����������������

System

System Level Tests
Run

Record

Off-Line Tests

Failure

Record Record

����������������

Debug

Play
Assertions run
in a System
Debugger

10

Application Example

����������������

Approach # 1

Replay Debugging and Testing for
Automatic Code Generation

Replay Debugging and Testing for
Automatic Code Generation

Record Play

����������������

Record Play

11

The Problem of Debugging and Testing
Generated Code for MDD

Model Driven Development
High level design

UML
Simulink?

DebuggingDesign

Simulink

Generate code
Low level runtime
OS, C/C++

Troubleshooting
No correlation: runtime to

d l

?
No Correlation

Target

����������������

model
Only possible to debug
generated code, not the
model
No feedback back to
design level
Experts needed

OS & HW

Runtime Layer

g

Running
Application PMD

Trace
Events

The Solution

Record Play

����������������

Record Play

12

ZealCore’s Replay Debugger
Play

System Model Replay
Debugger

Design
Use software recorder
Fuse data
“Do reverse engineering”
Replay

Target

p y
State machines, signaling
and states
Animate sequence- and
state diagrams
Exact representation of
runtime behavior

Correlate
Model + OS-events
Program modules

����������������

OS & HW

Runtime Layer

g

Recorder

Running
Application PMD

Trace
Events

Program modules
Processors
Native logs

Automatic fault
identification

Generated Code + Application Code

Rational Rose Real-Time (RRT) &
ZealCore System Recorder Integration

Recorder

Only Added to the

IBM’s RRT Runtime Layer

RRT Application RRT Application

Recorder

Only Added to the
Rose Real-Time
Runtime Library

No Modification of
the Application

Footprint is so Small
that recorder can be
Enabled even in

����������������

OS (CE/Linux/VxWorks/OSE…..)

Deployed Systems
PowerPC 705 (700MHz)

Heavy application 80-100% CPU
Load

~ 550 k Events/s (40Byte)

Recording cost: ~ +1 % CPU
Load

Code footprint: ~ 2K lines C code

13

Other Integrations

����������������

Alternatives

A Step Further: Replication

Record

ZealCore
Adds Value

Even to
Alternatives’
Recordings

Replicate

Replicate

Sample

Record

Sample
Expensive
Recording

Visualize
Recording ZealCore®

Model Debugger™

g

����������������

Sample as much as you want
while replicating re-executionReplicate

&
Sample

No Replication

Model Debugger

ZealCore®
System

Debugger™

14

TargetLink
Models

Data
Dictionary

Simulink/TargetLink
ZealCore System Recorder Integration

Automatic minimal set
Identification of
stimuli and
persistent state
Source code

Source

Analysis/
Instrumentation

TargetLink
Code generator

Source code
modification

State-of-the-art recorder

Resetting state and
reversing stimuli from
recording replays system
behavior

Allows replay on

Recorder

����������������

Source
code CC

Target

Binaries Binary level
Source code level
Model level

Summary

There is an increasing need for debugging methods
that can handle system level faultsthat can handle system level faults

The ever increasing complexity of software
Abstraction & computer aided analysis

Need to handle
Observability
Reproducibility

Equally important
Fi ld d b i

����������������

Field debugging
Lab debugging

15

Challenges

The ever increasing complexity of software in terms of size
but also concurrency and timeliness:

How to achieve confirmation (regression) testing on the
t l l (i t ki d l ti t system level (i.e., taking concurrency and real-time aspects

into account)
How to monitor software using technologies that scale to deployed
systems, i.e., large populations of systems with minimal and
predictable probe-effects (new systems as well as legacy)
How to increase the use of the collected/monitored information such
that it can be understood by people or automatically analyzed by
computers for debugging, or testing.
How to manage the collected information over time

����������������

g
How to make trend or regression analysis based on historical data.

How to achieve reproducible debugging environments (problem
related to confirmation testing)

Equally important
Field use
Lab use

THANK YOU!

henrik.thane@zealcore.com

www.zealcore.com

����������������

Figure 1. Allegedly the first computer bug - found by Grace Hopper's Team in 1945. Exhibited
at the Museum History of American Technology/Smithsonian

