(@) ZealCore

WE MAKE
IT VISIBLE

.

(9) ZealCore

(0' ZealCore
Embedded Solutions
. Record : Plai

Henrik Thane, ph.0.,
Founder
SVP Market Development

'ealCore Focus

Monitoring,
Debugging,

Testing of:

m Embedded

B Multi-tasking

B Real-Time

u Multi-Core

m Distributed Systems...
m Usedin

B The Field / Deployed

B The Lab / Pre-deployment

() ZealCore

Spin-off from the pioneering research work
performed at the Méalardalen Real-Time
Research Centre in Vasteras, and the
Royal Institute of Technology in
Stockholm, Sweden

Recognized by Gartner as Cool Vendor:

Gartner

Award by MIS, 2005

“One of top 10 risings stars in the

world”.
Embedded Solutions

[, ZealCore

@ ZealCore ¢ UFResearch and Technology

Tackles the difficulty of
understanding the behavior
of complex embedded systems

We provide solutions for
B Observability
m Reproducibility

Questions we try to answer
What information is of interest?
How to extract the information?
How to analyze the information?
How to manage the information?

@Z,EELQE,[E Fact: The Inadequacy of Verification

Incorrect specifications cause over 50% of all failures

[N. G. Leveson. Safeware System, Safety and Computers. Addison Wesley 1995.]

‘The radar system of HMS
Sheffield identified an incoming
Exocet missile as non-Soviet and
thus friendly. No alarm sounded.
The Ship sunk with substantial
losses of life.’

[ACM Software Engineering Notes , Vol.8, No. 3.]

B All wrong despite V&V

We need means to see what happens out there...

(o) ZealCore Fact: Debugging

Embuudud Solulivns.

Difficult to understand the behavior
of complex embedded systems

m Difficult to observe behavior
m Difficult to reproduce behavior

(9)ZealCore W Fact: Debugging

Fault Identification

(Debugging)

E Non Stop
J— m System keeps running even if software
stops
m Indeterminism

® Rerunning a program gives different
results

m Hard to reproduce failures

® Probe-effect (Heisenbugs)

m Instrumentation to record behavior
changes behavior

® Bugs hide when we are looking for them

Apply
brake force

Software controlled ABS

(9) ZealCore

Common Solutions
L.

@ ZealCore op efvation & Reproducibility Techniques

Embuudod Solulivns

TRACE_1("ROUTE", "gps_ROUTE_R4_Link")

m Hardware features
B In-circuit emulators, BDM, ETM, JTAG ports, logic analyzers
m Usually do not scale to deployed systems. Expensive to
“Insure” target with hardware recorders.

m Using a symbolic source code debugger
m Watches
m Problem: Non stop debugging
u Problem: Indeterminism

B Virtualization/simulators
= Non intrusive
B Problem: typically only virtualization of computer HW, not

m Software instrumentation

B The most common means by which the programmer can

u Problem: Probe-effects

m No input from deployed systems.
B In some cases lock step simulation — but 50% of failures

m auxiliary outputs, typically in terms of classic “printf()”

= How to reproduce inputs from the field

environment, e.g., Dynamics of a Robot

come from incorrect specifications.

increase the observability and reproducibility

statements and storage in logs.

@Z,EELQP"E Software Instrumentation Techniques

For Languages with Pre Processors
(C/C++) or Using Aspects

B Textual substitution by parser

m Textual substitution with macros of the C-

preprocessor

Inclusion/replacement additional library
Trace functions/methods

B L0g4J (logging package for Java)
Binary wrapping of object code
Dynamic instrumentation of
executable/executing code
ATOM,EEL Etch (Need restart)

Dynlnst (no restart, no real-time
considerations)

Dynamic Patch/Relink (no restart, real-time
considerations)

WindRiver Sensorpoints

ZealCore

Embuudud Solulivns

©

L ¢
| Test

Failure

Accelerated Troubleshooting
Our Approach:
Record First
Analyze Later

’ Runtime Failure

Field Trouble Shooting
m Lab Trouble Shooting

Solved!

ZealCore

Embuudud Solulivns.

©

WRecording Approach

mbedded Distributed / Multi-Pro / Multi-Core Real-Time Systems

Recording
Efficient Algorithms ‘

Static / Dynamic
Instrumentation
Shared logs Multiple logs
*Resource efficient Optimal Resource
*Lock Free Allocation

*Fault Tolerant

Multi-Core Enabled
Recording Infrastructure

(9 ZealCore — W'system Debugging

System Debugging =
Software Monitoring + System Event Processing

A necessary evolution Of
Avomate fuitre. @) @ traditional debugging methods

detection OK FAIL 1 To find and understand complex bugs
u Need to fuse & synchronize logs
= Need to automate the process

I:I I:l l:l u Need to raise the abstraction level
D: |:'].:[] Computer aided bug analysis

MMustrate

m Automatic import of several logs and
synchronization
Fusion and R R m Use graphics/abstractions

synchronize T/T)QY m Use reverse engineering
u Automatic fault identification

Multiple r
Logs E

@ ZealCore TheProblem of System Debugging
e Current Industrial Situation
Poor Trouble Shooting
General

Non Stop Behavior
Non Determinism

A/ \ .
. / \ - Many logs/recordings
Spooler log Different formats
probe Ml Difficult to read and
0
- log understand

No synchronization

(9) ZealCore

Information Funnel

System Level Debugger

Import and synchronization of

Logs

Correlation of Data
Automatic Fault Identification
Automatic Trend Analysis

Visualization & Reanimation
Works on-top of existing tools
Eclipse Based

ZealCore

Embuudud Solulivns

;.;* Assertion Result X

=l ¢ General assertions
-
¢® Cyde time overrun

CPU #nn

Wstem Level Tests

Run

<

System

Assertions run
in a System
Debugger

(9) ZealCore

(@) ZealCore
WE MAKE

IT VISIBLE

.

Application Example

Approach # 1

Replay Debugging and Testing for
Automatic Code Generation
' Record = Plax

10

(‘ ZealCore e’ Problem of Debugging and Testing
S o S ’ Generated Code for MDD
i e, Model Driven Development
i : Debugging : High level design
suttware FLaogix Telelogic E i UmML
:ff @ : [, : Simulink
e Y ! |
s ; ! Generate code
T : o : Low level runtime
| : 08, C/CH+
......... A
l | NoCorrelation Troubleshooting
: No correlation: runtime to
model
Running Only possible to debug
Application PMD generated code, not the
Trace model
Event:
= No feedback back to
design level
Experts needed

(9 ZealCore

WE MAKE
IT VISIBLE

The Solution
. Record Pla

.

11

(9) ZealCore alCore’s Replay Debugger
(>pey) (0) (<) () Use software recorder

Design System Model Replay Fuse data
gTheMlitiets Debugger

[sottwere 1-Logix Toretogic

“Do reverse engineering”

— s s | Replay . . .
T —_— State machines, signaling
- — and states
EE —> > Animat_e sequence- and
[state diagrams

Exact representation of
runtime behavior

Correlate
Model + OS-events
Program modules

Running ~ Processors
Application ; PMD Native logs

| @ Recorder < Trace Automatic fault
) B identification

(3 ZealCore WR&tional Rose Real-Time (RRT) &
i alCore System RecorderIntegration

Recorder
Generated Code + Application Code Only Added to the

RRT Application RRT Application Rose Real-Time
Runtime Library
‘ ‘ No Modification of
the Application
LS G (R e m Footprint is so Small
that recorder can be
‘ Enabled even in

Deployed Systems

PowerPC 705 (700MHz)

Heavy application 80-100% CPU
Load

~ 550 k Events/s (40Byte)
Recording cost: ~ +1 % CPU

Load

OS (CE/Linux/VxWorks/OSE.....

-

Code footprint: ~ 2K lines C code

(9 Zealcore T Other Integrations

GrapAIY
I-'Logix Telelogic

4\ The Mathworks dSPACE
V/ 4

ENEA WIND RIVER A
DL

(@) ZealCore

Alternatives ZealCore
Adds Value

Evento
Alternatives’
Recordings

Pkl

Expensive
Recording

:)
Visualize
Recording ZealCore®
© Model Debugger™

o%
ool @ Ol ®e
ZealCore®
M il
Debugger™

/&

No Replication

Sample as much as you want
while replicating r i

&
Sample

13

@ ZealCore - :
R alCore System RecorderiIntegration

Automatic minimal set

Identification of
stimuli and
Models Dictionary persistent state

Source code

modification
State-of-the-art recorder
; Analysis/ Resetting state and
Targetl'mk Instrumentation <:| @ reversing stimuli from
Code generator recording replays system
behavior

. Source Allows replay on
Binaries Binary level
cc [Binaries |
code Source code level
‘ Model level

TargetLink Data

(@ ZealCore W Summary

m There is an increasing need for debugging methods
that can handle system level faults

m The ever increasing complexity of software
m Abstraction & computer aided analysis

m Need to handle
m Observability
m Reproducibility

m Equally important

H Field debugging
m Lab debugging

14

(@) Zealtore ™ Challenges

The ever increasing complexity of software in terms of size
but also concurrency and timeliness:
® How to achieve confirmation (regression) testing on the
system level (i.e., taking concurrency and real-time aspects
into account)
® How to monitor software using technologies that scale to deployed

systems, i.e., large populations of systems with minimal and
predictable probe-effects (new systems as well as legacy)

m How to increase the use of the collected/monitored information such
that it can be understood by people or automatically analyzed by
computers for debugging, or testing.

m How to manage the collected information over time
® How to make trend or regression analysis based on historical data.

® How to achieve reproducible debugging environments (problem
related to confirmation testing)
m Equally important
m Field use
m Lab use

(@ZealCore W THANK YOU!

4 Photo # NH 96366-KN First Computer "Bug®, 1945

e
phre Oackon p{w‘ {um Ty
Jéen shyed = anham Foh7 HVE DT ek
15w e M ene ESESTAR) s e
b1y PRe > 2. ldeyabyd

v ok a::.ns;nw:J ik ¢ .
Lt - e .
o et henrik.thane@zealcore.com

A L]
s)hr‘.".-. Sosi < ?J'f— ts-»c.-—._km.l:l

www.zealcore.com
Qdau' 70 Cane| F

o Th)vn Celay -

e “'“‘x‘;J*:?:;f' caie 91 i:-u, 1’““1 {ounl-

[E PR PN

Figure 1. Allegedly the first computer bug - found by Grace Hopper's Team in 1945. Exhibited
at the Museum History of American Technology/Smithsonian

15

