
Linux Static Tracing
System Wide!



More than Kernel Tracing
• Many layers 

– O&M
– Application software
– Middleware
– Operating system
– Virtualization

• Developed in different context, i.e. de facto standard needed
– In house development
– Consultant
– Reusable components
– Third party products

• Many Languages: C/C++, Java, Erlang

• Node-wide, i.e. multiple processes, multiple processors



Trace storage

• Each traced process write in a shared memory buffers.

• Shared memory buffers are accessed from the LTTng
daemon process and data is written to the chosen trace-store:

• circular “flight recorder” buffer 
• local disk
• remote disk
• remote stream (to be completed)



Three Interfaces
1) Creation

– software developer at development time
– prepare software with information to enable future tracing

2) Activation
– field-engineer, system administrator, tester, developer
– activate, de-activate, listing
– Same interface for all component, language, layer

3) Analysis
– field-engineer, system administrator, tester, developer
– Typically done offline
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Node-Wide Tracing
• Very low overhead
• Streaming daemon for multi-process/processors, multi-node 

trace control and retrieval
• Tracing at process start for user-space i.e. detection of 

active trace sessions and automatic enablement of relevant 
trace-points

• Tracing at system start for kernel
• Conditional tracing in userspace
• Trace buffers flushing in core dump when process crash to 

allow post mortem analysis
• Access control, e.g. limit some tracepoint to particular group 

or role 



Node-Wide Tracing
• Quota per tracepoint, subsystem or globally to avoid 

unacceptable performance degradation
• Name space division in order to guarantee uniqueness of 

trace-point names and avoid name-collisions
• Structure of trace-points into “layers” in order to give 

system insight in a certain level (system/function) e.g. 
com.<company>.<component>.<layer>.<function>.<…>

• Node-relevant condition data, e.g. subscriber id, call id, 
SIP session id, etc.



Activation

• Activating one trace points or groups of trace 
points

• Trace session can be controlled by a trace 
script: activation, deactivation, selecting trace 
store, etc.

• Create and run more than one trace session in 
parallel at the same time



Analysis

• Typically done off-line after tracing session 
ended.

• Tool should have a plug-in architecture to 
facilitate different kind of analyses and 
merging different kind of traces.

• Eclipse was chosen because of it’s wide 
use and plug-in architecture.


