
Linux Static Tracing
System Wide!



More than Kernel Tracing
• Many layers 

– O&M
– Application software
– Middleware
– Operating system
– Virtualization

• Developed in different context, i.e. de facto standard needed
– In house development
– Consultant
– Reusable components
– Third party products

• Many Languages: C/C++, Java, Erlang

• Node-wide, i.e. multiple processes, multiple processors



Trace storage

• Each traced process write in a shared memory buffers.

• Shared memory buffers are accessed from the LTTng
daemon process and data is written to the chosen trace-store:

• circular “flight recorder” buffer 
• local disk
• remote disk
• remote stream (to be completed)



Three Interfaces
1) Creation

– software developer at development time
– prepare software with information to enable future tracing

2) Activation
– field-engineer, system administrator, tester, developer
– activate, de-activate, listing
– Same interface for all component, language, layer

3) Analysis
– field-engineer, system administrator, tester, developer
– Typically done offline



High Level Architecture
Java 
Application
EnvironmentC/C++ Linux 

Application 
Environment

Java 
Virtual 
Machine 

Linux Operating System

Kernel Trace
Faciliites

Application
TracePoint

Application
Marker

Erlang 
Application
Environment

Erlang
Virtual 
Machine 

Linux Kernel

Trace Control

libtracectl libtrace libmarker

LTTng Daemon process

Application
TracePoint

LTTng JNI 
adaptor

Java LTTng API

Application
TracePoint

LTTng adaptor

Erlang LTTng API

Control Path

Output Path

Local
FS

Shared 
Memory 
Buffer

Shared 
Memory 
Buffer

Legend

Shared 
Memory 
Buffer

Remote Disk 
Remote Stream

flight 
recorder 

buffer

libtracectl libtrace libmarker libtracectl libtrace libmarker



Node-Wide Tracing
• Very low overhead
• Streaming daemon for multi-process/processors, multi-node 

trace control and retrieval
• Tracing at process start for user-space i.e. detection of 

active trace sessions and automatic enablement of relevant 
trace-points

• Tracing at system start for kernel
• Conditional tracing in userspace
• Trace buffers flushing in core dump when process crash to 

allow post mortem analysis
• Access control, e.g. limit some tracepoint to particular group 

or role 



Node-Wide Tracing
• Quota per tracepoint, subsystem or globally to avoid 

unacceptable performance degradation
• Name space division in order to guarantee uniqueness of 

trace-point names and avoid name-collisions
• Structure of trace-points into “layers” in order to give 

system insight in a certain level (system/function) e.g. 
com.<company>.<component>.<layer>.<function>.<…>

• Node-relevant condition data, e.g. subscriber id, call id, 
SIP session id, etc.



Activation

• Activating one trace points or groups of trace 
points

• Trace session can be controlled by a trace 
script: activation, deactivation, selecting trace 
store, etc.

• Create and run more than one trace session in 
parallel at the same time



Analysis

• Typically done off-line after tracing session 
ended.

• Tool should have a plug-in architecture to 
facilitate different kind of analyses and 
merging different kind of traces.

• Eclipse was chosen because of it’s wide 
use and plug-in architecture.


