
Systemtap times

July 2009

Frank Ch. Eigler <fche@redhat.com>
systemtap lead

mailto:fche@redhat.com

why trace/probe

● to monitor future
● to debug present
● to analyze past

problem space

● specification: what data to gather
– compiled-in? dynamic? multiple sources? scope?

expressiveness?

● execution: how to gather it
– compiled? overheads? disruptiveness?

portability?

● analysis: how to understand it
– bulk trace? visualize? response? custom

reporting?

in praise of generality I

● why programmable?
– conditions & actions sometimes need to be:

● expressive (“collect variable X, Y”; dereference complex
pointer expression; format reports)

● stateful (“elapsed time greater than recent average for
this operation on that device”)

– program artifact (script) easy to share, abstract

single idea

● what to watch for?
– kernel.function(“sys_open”)

– process(“/bin/bash”).begin

– timer.s(10)

● what to do?
– print something

– remember something

– change something

simple syntax

● probe EVENT { ACTION }

● actions are C/awk like, plus
– $context variables

– loops, conditions, functions

– global variables (automatically locked)

– escape to raw C for guru users

● stap foo.stp

in praise of generality II

● why unified?
– some problem go beyond individual programs or

subsystems

– many kinds of event sources exist
● kernel probes, timers, watchpoints, user-space probes, ...
● each with its own API

– events occur in many contexts
● kernel responses to user-space occurrences
● shared libraries used by many processes

examples

● http://sourceware.org/systemtap/examples/index.html

● http://sourceware.org/systemtap/wiki/WarStories

● ordinary
– log events, filtered + correlated + summarized

– call graphs with variable dumps

– measure times/values, indexed by anything

– graph cpu/net/disk utilization, act upon thresholds

● esoteric
– kernel-enforced file naming policy filters

– security bug band-aids

recent developments

● rich symbolic probing user-space programs
● attaching to user + kernel markers, tracepoints
● organizing more samples, documentation
● easing deployment: compile server, debuginfo-

less operations

user-space probing

● finally, system-wide, seamless, symbolic
● based upon dwarf debugging data (gcc -g)
● dynamically instrument binaries, shared

libraries, potentially at the statement level
● easily trace variables
● attach to sys/sdt.h dtrace markers too, as

compiled into postgres, java, ...

user-space probing

● measure average dbms query execution times

function time() { return gettimeofday_us() }
probe process("psql").function("SendQuery").call
{
 entry[tid()]=time()
}
probe process("psql").function("SendQuery").return
{
 tid=tid()
 if (! ([tid] in entry)) next

 query=user_string($query)
 queries[query] <<< time() - entry[tid]
 delete entry[tid]
}
/* and an “end” probe to format report */

user-space probing

probe end,error,timer.s(5) {
 printf("%2s %6s %-40s\n",
 "#", "uS", "query");
 foreach ([q] in queries- limit 10)
 printf("%2d %6d %-40s\n",
 @count(queries[q]),
 @avg(queries[q]), q)
 printf("\n");
 delete queries
}

user-space probing

 # uS query
12 990 DELETE FROM num_result;
 6 3909 COMMIT TRANSACTION;
 6 132 BEGIN TRANSACTION;
 6 143 SELECT date '1999-01-08';
 4 3651 insert into toasttest
values(decode(repeat('1234567890',10000),'escape'));
 4 3786 insert into toasttest
values(repeat('1234567890',10000));
 4 1218 SELECT '' AS five, * FROM FLOAT8_TBL;
 3 804 END;
 3 295 BEGIN;
 3 1032 INSERT INTO TIMESTAMPTZ_TBL VALUES ('now');

operation part 1

● compile probe script foo.stp:
– parse script

– combine it with tapset (library of scripts by experts)

– elaborate it with debugging information, probe
catalogues, event source metadata

– generate C code with safety checks

– compile into kernel module with kbuild

– result: vanilla kernel module

operation part 2

● run probe module foo.ko:
– load into kernel

– detach (flight-recorder mode) or consume trace live

– unload

● probe module may be cached, reused, shared
with other machines running same kernel

● sysadmins can authorize others to run
precompiled modules

under construction
● system-wide backtracing for deep profiling
● java probing & backtracing
● unprivileged user support
● gui-controlled monitoring
● better quality and smaller quantity of debuginfo
● interface to other kernel event sources: perfctr,

ftrace
● non-kernel-ko backends for simple scripts

samples/documentation

● samples installed, categorized, also online
– http://sourceware.org/systemtap/examples/index.html

● “beginner's guide”
– http://tinyurl.com/ar8wat

● wiki
– http://sourceware.org/systemtap/wiki

http://sourceware.org/systemtap/examples
http://tinyurl.com/ar8wat

http://sourceware.org/systemtap

