The state of Linux tracing

Christoph Hellwig



Kernel Tracing in Linux

A bit of a troublesome history

Kernel development is to a large extent driven
by the needs of people working on it

Otherwise good arguments and really good
code are needed

Tracing historically failled on both accounts



Kernel Tracing in Linux

A lot of tracing work has traditionall been done
outside of the mainline Linux ecosystem

.. .and still is

That fade is shared with a lot of RAS
Infrastructure



Kernel Tracing in Linux - early history

About 10 years ago the first serious tracing
systems for Linux showed up:

IBM's dprobes for dynamic tracing
The original LTT for static tracing



LTT /LTTng

LTT came from the embedded and realtime
community

Support tracing by adding static trace points
to the kernel

After a major overhaul evolved into LTTng in
2005



Adoption of the OS/2 tracing framework to Linux
For both kernel and userspace tracing
Uses a C-like scripting language to write probes

Gets compiled to bytecode and interpreted
by the kernel

Relatively unstructured, large amount of
kernel code



The reception was rather luke warm:

Linux favours incremental feature
development

Still not many developers convinced of the
advantages of tracing

Some influential developers did not like the
byte code interpretation in kernel space



First attempt at modularizing dprobes in 2002

Simple kernel facility to execute code when the

kernel execution hits brea
Kprobes got merged into t
But almost no users (on

Kpoints
ne mainline kernel

y tcp/dccp probes)

Most later tracing technologies build ontop of

kprobes



A project for scripted dynamic tracing

Started in 2005
Compiles scripts into kernel modules (C code)

Has all problems of external kernel modules
Relies heavily on debug information

Allows for very flexible instrumentation

Which require a lot of space



Appeared on the scene in 2008

Initially started out as a latency tracer for
real time linux

Incorporated a ring-buffer from an earlier
simple tracer from Steve Rosted

Ftrace now Is a framework for different tracers:
Function tracer, function graph tracers, ..



Ftrace event tracer

In 2009 a new ftrace EVENT tracer appeared

Allows to embedd static tracepoints into the
kernel source

Very similar model to LTT/LTTng
Nicer kernel instrumentation
Very simple ASCII interface




State of the Union - Kernel tracing

Ftrace with various subtracers is in the kernel
tree

Used a lot by kernel developers
LTTng Is an out of tree kernel patch

Used a lot by embedded Linux projects

Systemtap is an out of tree kernel module
generator

Used heavily by Red Hat and other Enterprise
distributions



Ftrace event tracer vs LTTng

The Ftrace event tracer and LTTng provide the
same high level functionality:

Should be able to share the same in-kernel
instrumentation (TRACE_EVENT)

Ftrace provides an easy to use text interface
for developers - missing in LTTnhg

LTTng provides a mature binary interface for
tracing tools - ftrace has a immature binary
interface

The core ring buffer is implemented differently
Ftrace uses one ring buffer for all tracers



Ftrace event tracer vs LTTng

Many kernel developers would like to see a
combination of the ftrace even tracer and
LTTng

Use the TRACE EVENT kernel instrumentation
Support the ftrace text output
Support the LTTng binary output and tools
using it
Filtering features in the even tracer still need
better user interfaces

Something like the zedtrace perl interface



Systemtap vs the rest

Does not integrate very well with the static
tracers

Can't be used to add events to the LTTng or
ftrace ring buffers

Can use existing trace points and similar
markers to probe at a specific place



Userspace tracing

Always under-represented
Kernel hackers first care for kernel tracing :)

Both dprobes and LTT also supporte some sort
of user tracing

LTT supported adding events from userspace
via writing to a device file

Very slow
Requires a lot support from the application



Userspace tracing - dprobes / uprobes

Dprobes used to support tracing user space
applications

The implementation was rather problematic
Got factored into uprobes later

Kprobes like model

Used by Systemtap

No good direct kernel interface



Userspace tracing - LTTng

There is a port of LTThg to userspace in
progress

Does not require any kernel support



User space tracing - ptrace / utrace

Ptrace is the traditional Unix debug interface

Not directly related to tracing despite the
name

Very ugly interface

Utrace is a new core infrastructrure for per-
process debuging

Does not implement any tracing directly, but
required for the systemtap userspace probes



User space tracing - gdb tracepoints

GDB does ptrace, so all this work will inherit the
ptrace problems

Can we help the GDB people with better
kernel support for tracepoints?

How to replace ptrace as an interface for
GDB? Frank's in-kernel gdbstub?



Questions?

Thanks for your attention!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

