

The state of Linux tracing

Christoph Hellwig

Kernel Tracing in Linux

 A bit of a troublesome history
 Kernel development is to a large extent driven

by the needs of people working on it
 Otherwise good arguments and really good

code are needed
 Tracing historically failled on both accounts

Kernel Tracing in Linux

 A lot of tracing work has traditionall been done
outside of the mainline Linux ecosystem

 .. and still is
 That fade is shared with a lot of RAS

infrastructure

Kernel Tracing in Linux – early history

 About 10 years ago the first serious tracing
systems for Linux showed up:

 IBM's dprobes for dynamic tracing
 The original LTT for static tracing

LTT / LTTng

 LTT came from the embedded and realtime
community

 Support tracing by adding static trace points
to the kernel

 After a major overhaul evolved into LTTng in
2005

Dprobes

 Adoption of the OS/2 tracing framework to Linux
 For both kernel and userspace tracing
 Uses a C-like scripting language to write probes

 Gets compiled to bytecode and interpreted
by the kernel

 Relatively unstructured, large amount of
kernel code

Dprobes

 The reception was rather luke warm:
 Linux favours incremental feature

development
 Still not many developers convinced of the

advantages of tracing
 Some influential developers did not like the

byte code interpretation in kernel space

Kprobes

 First attempt at modularizing dprobes in 2002
 Simple kernel facility to execute code when the

kernel execution hits breakpoints
 Kprobes got merged into the mainline kernel

 But almost no users (only tcp/dccp probes)
 Most later tracing technologies build ontop of

kprobes

Systemtap

 A project for scripted dynamic tracing
 Started in 2005

 Compiles scripts into kernel modules (C code)
 Has all problems of external kernel modules

 Relies heavily on debug information
 Allows for very flexible instrumentation
 Which require a lot of space

Ftrace

 Appeared on the scene in 2008
 Initially started out as a latency tracer for

real time linux
 Incorporated a ring-buffer from an earlier

simple tracer from Steve Rosted
 Ftrace now is a framework for different tracers:

 Function tracer, function graph tracers, ..

Ftrace event tracer

 In 2009 a new ftrace EVENT tracer appeared
 Allows to embedd static tracepoints into the

kernel source
 Very similar model to LTT/LTTng
 Nicer kernel instrumentation
 Very simple ASCII interface

State of the Union – Kernel tracing

 Ftrace with various subtracers is in the kernel
tree

 Used a lot by kernel developers
 LTTng is an out of tree kernel patch

 Used a lot by embedded Linux projects
 Systemtap is an out of tree kernel module

generator
 Used heavily by Red Hat and other Enterprise

distributions

Ftrace event tracer vs LTTng

 The Ftrace event tracer and LTTng provide the
same high level functionality:

 Should be able to share the same in-kernel
instrumentation (TRACE_EVENT)

 Ftrace provides an easy to use text interface
for developers – missing in LTTng

 LTTng provides a mature binary interface for
tracing tools – ftrace has a immature binary
interface

 The core ring buffer is implemented differently
 Ftrace uses one ring buffer for all tracers

Ftrace event tracer vs LTTng

 Many kernel developers would like to see a
combination of the ftrace even tracer and
LTTng

 Use the TRACE_EVENT kernel instrumentation
 Support the ftrace text output
 Support the LTTng binary output and tools

using it
 Filtering features in the even tracer still need

better user interfaces
 Something like the zedtrace perl interface

Systemtap vs the rest

 Does not integrate very well with the static
tracers

 Can't be used to add events to the LTTng or
ftrace ring buffers

 Can use existing trace points and similar
markers to probe at a specific place

Userspace tracing

 Always under-represented
 Kernel hackers first care for kernel tracing :)

 Both dprobes and LTT also supporte some sort
of user tracing

 LTT supported adding events from userspace
via writing to a device file

 Very slow
 Requires a lot support from the application

Userspace tracing – dprobes / uprobes

 Dprobes used to support tracing user space
applications

 The implementation was rather problematic
 Got factored into uprobes later

 Kprobes like model
 Used by Systemtap
 No good direct kernel interface

Userspace tracing – LTTng

 There is a port of LTTng to userspace in
progress

Does not require any kernel support

User space tracing – ptrace / utrace

 Ptrace is the traditional Unix debug interface
 Not directly related to tracing despite the

name
 Very ugly interface

 Utrace is a new core infrastructrure for per-
process debuging

 Does not implement any tracing directly, but
required for the systemtap userspace probes

User space tracing – gdb tracepoints

 GDB does ptrace, so all this work will inherit the
ptrace problems

 Can we help the GDB people with better
kernel support for tracepoints?

 How to replace ptrace as an interface for
GDB? Frank's in-kernel gdbstub?

Questions?

 Thanks for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

