
  

The state of Linux tracing

Christoph Hellwig



  

Kernel Tracing in Linux

 A bit of a troublesome history
 Kernel development is to a large extent driven 

by the needs of people working on it
 Otherwise good arguments and really good 

code are needed
 Tracing historically failled on both accounts 



  

Kernel Tracing in Linux

 A lot of tracing work has traditionall been done 
outside of the mainline Linux ecosystem

 .. and still is
 That fade is shared with a lot of RAS 

infrastructure



  

Kernel Tracing in Linux – early history

 About 10 years ago the first serious tracing 
systems for Linux showed up:

 IBM's dprobes for dynamic tracing
 The original LTT for static tracing



  

LTT / LTTng

 LTT came from the embedded and realtime 
community

 Support tracing by adding static trace points 
to the kernel

 After a major overhaul evolved into LTTng in 
2005



  

Dprobes

 Adoption of the OS/2 tracing framework to Linux
 For both kernel and userspace tracing
 Uses a C-like scripting language to write probes

 Gets compiled to bytecode and interpreted 
by the kernel

 Relatively unstructured, large amount of 
kernel code



  

Dprobes

 The reception was rather luke warm:
 Linux favours incremental feature 

development
 Still not many developers convinced of the 

advantages of tracing
 Some influential developers did not like the 

byte code interpretation in kernel space



  

Kprobes

 First attempt at modularizing dprobes in 2002
 Simple kernel facility to execute code when the 

kernel execution hits breakpoints
 Kprobes got merged into the mainline kernel

 But almost no users (only tcp/dccp probes)
 Most later tracing technologies build ontop of 

kprobes



  

Systemtap

 A project for scripted dynamic tracing
 Started in 2005

 Compiles scripts into kernel modules (C code)
 Has all problems of external kernel modules

 Relies heavily on debug information
 Allows for very flexible instrumentation
 Which require a lot of space



  

Ftrace

 Appeared on the scene in 2008
 Initially started out as a latency tracer for 

real time linux
 Incorporated a ring-buffer from an earlier 

simple tracer from Steve Rosted
 Ftrace now is a framework for different tracers:

 Function tracer, function graph tracers, ..



  

Ftrace event tracer

 In 2009 a new ftrace EVENT tracer appeared
 Allows to embedd static tracepoints into the 

kernel source
 Very similar model to LTT/LTTng
 Nicer kernel instrumentation
 Very simple ASCII interface



  

State of the Union – Kernel tracing

 Ftrace with various subtracers is in the kernel 
tree

 Used a lot by kernel developers
 LTTng is an out of tree kernel patch

 Used a lot by embedded Linux projects 
 Systemtap is an out of tree kernel module 

generator
 Used heavily by Red Hat and other Enterprise 

distributions



  

Ftrace event tracer vs LTTng

 The Ftrace event tracer and LTTng provide the 
same high level functionality:

 Should be able to share the same in-kernel 
instrumentation (TRACE_EVENT)

 Ftrace provides an easy to use text interface 
for developers – missing in LTTng

 LTTng provides a mature binary interface for 
tracing tools – ftrace has a immature binary 
interface

 The core ring buffer is implemented differently
 Ftrace uses one ring buffer for all tracers



  

Ftrace event tracer vs LTTng

 Many kernel developers would like to see a 
combination of the ftrace even tracer and 
LTTng

 Use the TRACE_EVENT kernel instrumentation
 Support the ftrace text output
 Support the LTTng binary output and tools 

using it
 Filtering features in the even tracer still need 

better user interfaces
 Something like the zedtrace perl interface



  

Systemtap vs the rest

 Does not integrate very well with the static 
tracers

 Can't be used to add events to the LTTng or 
ftrace ring buffers

 Can use existing trace points and similar 
markers to probe at a specific place



  

Userspace tracing

 Always under-represented
 Kernel hackers first care for kernel tracing :)

 Both dprobes and LTT also supporte some sort 
of user tracing

 LTT supported adding events from userspace 
via writing to a device file

 Very slow
 Requires a lot support from the application



  

Userspace tracing – dprobes / uprobes

 Dprobes used to support tracing user space 
applications

 The implementation was rather problematic
 Got factored into uprobes later

 Kprobes like model
 Used by Systemtap
 No good direct kernel interface



  

Userspace tracing – LTTng

 There is a port of LTTng to userspace in 
progress

Does not require any kernel support



  

User space tracing – ptrace / utrace

 Ptrace is the traditional Unix debug interface
 Not directly related to tracing despite the 

name
 Very ugly interface

 Utrace is a new core infrastructrure for per-
process debuging

 Does not implement any tracing directly, but 
required for the systemtap userspace probes



  

User space tracing – gdb tracepoints

 GDB does ptrace, so all this work will inherit the 
ptrace problems

 Can we help the GDB people with better 
kernel support for tracepoints?

 How to replace ptrace as an interface for 
GDB?  Frank's in-kernel gdbstub? 



  

Questions?

 Thanks for your attention!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

