

ftrace and Mulitple Buffers

Steven Rostedt
Red Hat

ftrace Today

● Located in /sys/kernel/debug/tracing
● The 'trace' file
● The 'trace-pipe' file
● per_cpu/cpu*/

– stats

– trace

– trace_pipe

– trace_pipe_raw

ftrace Today

available_events options trace available_filter_functions per_cpu
trace_clock available_tracers printk_formats trace_marker
buffer_size_kb README trace_options buffer_total_size_kb
saved_cmdlines trace_pipe current_tracer set_event trace_stat
dyn_ftrace_total_info set_ftrace_filter tracing_cpumask enabled_functions
set_ftrace_notrace tracing_enabled events set_ftrace_pid
tracing_max_latency free_buffer set_graph_function tracing_on
function_profile_enabled stack_max_size tracing_thresh
kprobe_events stack_trace kprobe_profile
stack_trace_filter

ftrace Today

● One global buffer
● One tracer at a time (function, nop, function

graph, latency: irqsoff, preemptoff, etc)
● All events go into the same buffer

– Tracing two events
● One is a hog
● One seldom triggers

– The hog hides this event

ftrace Today

● Was always designed to handle multiple buffers
● Ring buffer is agnostic to the tracer
● global_trace (the tracer array) was always static
● Each tracer has uses its own trace array pointer

ftrace Today

● TRACE_EVENT came along
● The macros were complex

– Simple things were done to offset the
complexity

● Called handlers to just use the global buffer

ftrace Today

● TRACE_EVENT events now can pass data
● Function tracer can now pass data
● The descriptor of where the events are written

can be passed

ftrace Tomorrow

● Encompass data recording within a group
● Multiple buffers
● Different events recording in different buffers

What's the problem?

● The work is done (still needs testing)
● The hardest part needs to be solidified

– The User Interface

● /debug/tracing/instances
● /debug/tracing/instances/new
● /debug/tracing/instances/delete (free?)
● /debug/tracing/instances/foobar/events
● /debug/tracing/instances/foobar/trace (etc)

What else can we do?

● ls /debug/tracing/foobar
– trace

– trace_pipe

– tracing_enabled

– tracing_on

– trace_marker

– buffer_size_kb

– (etc)

What's done

● Just a prototype (for now)
● Just events

– No tracers
● function
● latency

– But, these are to come

● Filter on processes
– Currently filter is global

Perf?

● Add syscall interface to create ftrace buffers
● Use perf ioctl method
● allow perf to read the ftrace buffers
● Interleave the events from perf and ftrace

Discussion
and Demo!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

