

Can mainstream tracing meet
embedded needs?
 A view of debugging and performance measurement
 from an embedded perspective. An overview of needs,
 constraints, problems and solutions.

 Frank Rowand, Sony Network Entertainment August 30, 2012
 120827_1747

Why I am here...

 “It would be great to also have feedback from

 Sony users, would it be possible?”

What is embedded?
 From a Sony perspective...

$170

SMP processor, 100's Mhz

small RAM for Linux
(application gets priority)

$65,000

many processors

2.5 TB / hour

What is embedded?
 From a Sony perspective...

 - There is obviously not one answer

 - Many different product categories

 - Range of devices in each category

 - Many different product teams

The resulting tracing needs will thus not be
unified, and are likely to be contradictory!

Contradiction
I need both:

 - feature X

 - feature !X

Contradiction Example
A product development team is strongly adverse
to rebuilding kernel (very costly process).

A sufficiently non-invasive performance tool
used by the Sony distro team requires kernel
rebuilds to alter measurement options.

==> That performance tool is not very useful for
 the product team, but is required by the distro
 team to shave microseconds off latency to
 meet the requirements of the product team.

Can mainstream tracing meet
embedded needs?
- There is not one set of needs and requirements

- There are many disparate, conflicting needs

What is embedded?
 From another perspective...

Some Common ELC topics
 - power management

 - memory usage

 - boot time

 - bring up

These items are consistent with the common
Sony embedded concerns.

Translated to goals
- minimize power usage (max battery run time,
 min energy cost)

- minimize memory usage (min cost, size, power)

- minimize boot time (usability, min power)

- constraint: minimize hardware & software cost

 - low processor frequency

 - small memory size

 - sometimes real-time

 - sometimes time to market

Needs

 - Data Collection

 - Data Analysis

 - Data Visualization

Needs
 - Performance Measurement, Tuning & Analysis

 - Performance Debugging

 - Hardware Debugging

 - Kernel Debugging

 - Application Debugging

Environment
- mostly during development

 - the focus of this talk

- different needs at deployment time

 - used by product support team, not end user

What is Measured (examples)
 - latency

 - locks

 - code path execution cost

 - memory usage

 - cause and effect

 - scheduling

 - network

 - I/O

 - bus traffic

Latency
 - interrupts off

 - preemption disabled

 - task switch

 - lock contention

 - overall (eg cyclictest)

Code Execution Cost
 - instruction count

 - cycle count

 - I-cache, D-cache statistics

 - hit

 - miss

 - stall cycles

scheduling
 - task switch cost

 - task switch latency

 - process migration

Debugging
 - events leading up to the failure

 - state of system at failure

Power Usage
 - wake ups

 - wake up sources

 - power state transitions

 - related latencies

Types of Data
 - event traces

 - aggregate and accumulated data

 - count
 - minimum
 - average
 - maximum
 - percentiles
 - variance, standard deviation
 - histogram
 - other creative metrics and relationship data

Environment
 - Linux kernel with UNIX-like userspace

 - Linux kernel with Android userspace

 - Linux kernel with dual userspace

Environment

 - processor architectures:

 - ARM

 - MIPS

 - x86

 - PowerPC

Environment

 - system architectures:

 - big endian

 - little endian

 - uniprocessor

 - SMP

 - big.LITTLE (anticipated)
 (will aggregate data reflect processor type?)

 - DSP

Environment

 Development system typically different
 architecture than target system.

 aka. cross development

Problems
Need to collect data from early in boot process

 - from beginning of kernel boot

 - from reset, including bootloader

Problems
Memory constrained

 - the camera example is not the smallest
 memory system of interest

 - trace duration typically limited

 - mixed stack size feature (4k vs 8k) to reduce
 memory usage

 - one product uses memplug to move memory
 between Linux and DSP as needed

Problems
Overhead

 - Heisenberg, aka observer effect
 - cpu
 - cache
 - memory
 - bus traffic

Problems
Overhead Examples

 - Even custom lite tracing often needs to be
 invoked in reduced functionality mode to avoid
 causing the application to miss deadlines, which
 would cause the product to not function.

 - Product team funded process migration trace
 tool because use of existing trace points was
 too expensive.

Problems
Some product development teams reluctant to
rebuild the kernel and application then reload
on the device due to long cycle time.

 - Acceptable to reboot with updated kernel
 command line.

 - Acceptable to enable and disable tools via
 /proc, etc

Solutions - mainline / community
 - kernelshark

 - ltt

 - ftrace

 - perf

 - /proc/whatever (eg lock_stat)

 - miscellaneous

Solutions - in house
 - lite latency tracer

 - code path tracer

 - process migration tracer

 - bus monitor

 - jtag trace

Solutions - data analysis
 - custom analysis tools
 - custom graphing tools
 - spread sheet programs
 - kernelshark
 - ltt
 - perf

Solutions
No single answer.

Use the right tool for the right job.

Can mainstream tracing meet
embedded needs?

An anecdotal answer:
 Some of my conference talks have examples

 of my use of tracing and performance tools.

My ELC 2008 talk

First 90 slides show useful data and problem
solving, partially using existing tools.

Next 9 slides show a problem with existing tools.

The next slide is tx49 cyclictest latency
data (blue is average, red is max), for three
cases:

 - no latency tracing enabled
 - trace-lite enable
 - preempt-rt patch latency tracing enabled

The data shows the large performance impact
of enabling latency tracing.

Each individual graph contains multiple lines,
where each line is the result of a single test run.

½ of the tests have no “ls” background load.

The next slides are tx49 interrupts disabled time
for two cases:

red:
 preempt-rt patch latency tracing enabled

blue:
 trace-lite enabled

The data again shows the large performance
impact of enabling latency tracing.

My ELCE 2008 talk
A somewhat jaded conclusion...

 What Does It All Mean?

Frank's Law of Performance Tools

The performance metric that you need to answer
the current question

 - is not available from any existing source or tool

 - or is not presented in a meaningful manner

You will need to write a new tool or leverage an
existing tool.

My LinuxCon Japan 2011 talk
Tools that I found useful:

 cyclictest
 perf sched
 perf PMU
 perf trace
 ftrace
 KernelShark
 ltt
 /proc/lock_stat
 hwlat_detector

My ELC 2011 talk
ftrace function graph was useful

My ELC 2011 talk
Most required data not available from existing tools.

Added PMU data collection to lite latency tracer.

PMU data collection for specific code paths.

May have been able to leverage perf for PMU data
but did not try because it was easy to leverage
lite tracer.

Enhanced /proc/lock_stat
 - filter (measure only during specific code paths)
 - add histogram data

Can mainstream tracing meet
embedded needs?

Anecdotal conclusion:
 Sometimes: yes

 Often: no

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

