
© Hitachi, Ltd. 2012. All rights reserved.

Virtio-trace
 - Towards the flexible fast interconnection between guest and host
for tracing

Tracing Summit 2012

Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>

Yoshihiro YUNOMAE <yoshihiro.yunomae.ez@hitachi.com>

Linux Technology Center

Yokohama Research Lab., Hitachi, Ltd.

1

© Hitachi, Ltd. 2012. All rights reserved.

Background for Inter-VM Tracing

 Enterprise systems are moving on (private/public) cloud which
uses virtualization technology and aim for system consolidation.

– Multiple servers run on one physical system

– This makes system trouble shooting harder

2

consolidate

VM

VM

VM

VM
Servers

© Hitachi, Ltd. 2012. All rights reserved.

Troubles in Virtualized System

 A guest VM ...

– Can be affected by other VM operation

– Can die by host OS or hypervisor’s bug

3

VM1 VM2

Host

app app

Guests

slow down

VM

Host

Guests

wrong response

app crash

Host-Guest inter-VM tracing helps root cause analisys

© Hitachi, Ltd. 2012. All rights reserved.

Challenges of Inter-VM Tracing

 Tracing virtualized system has following challenges

1. Synchronize time-stamp for each VM’s log
• Each VM has own clock

2. Collect guests trace-log from host without overhead
• Too huge trace logs (# of VM times of logs)

4

VM1 VM2

Host

Guests

tracer tracer

tracer

Trace Logs

?

© Hitachi, Ltd. 2012. All rights reserved.

First Prototype (~May 2012)

 Use systemtap as a tracer

– Trace both of kernel and user applications

 Use tsc_offset to adjust guests’ time-stamp-counter(tsc)

– This prototype use TSC for timestamp

– Also, a VM is pinned on a CPU

 Use IVRing to pass the trace logs from guests to host

– IVRing is an implementation of Inter-VM Ring buffer using
IVShmem

 Use TimeDoctor to visualize trace data

5

© Hitachi, Ltd. 2012. All rights reserved.

First Prototype Overview

6

© Hitachi, Ltd. 2012. All rights reserved.

TSC on x86 Virtual Machine

 Each guests has virtualized independent tsc

– The substitution of host’s tsc and guests’ one is called
tsc_offset

– Each tracers in guests
uses own tsc to record
time stamp, and we
can adjusting this tsc
using tsc_offset to
merge logs.

– Of course, this depends
on “constant_tsc”

7

VM1 VM2

Host

Guests

tsc_offset tsc_offset

tracer tracer

tracer

Trace Logs

© Hitachi, Ltd. 2012. All rights reserved.

Adjusting TSC on Prototype

8

Show tsc_offset

for each vm via

systemtap’s procfs

Output the pair of

qemu-kvm’s PID

and its tsc_offset

Save tsc_offset of

each VMs @vmexit

© Hitachi, Ltd. 2012. All rights reserved.

IVRing - Fast Interconnect for Tracing

9

© Hitachi, Ltd. 2012. All rights reserved.

IVRing driver

IVRing on IVShmem

 A ring-buffer IVRing is constructed on IVShmem as a data
path for trace data of a guest.

 IVShmem is a memory-PCI device

– Backend memory is a posix shmem.

 IVTrace can read the data without memory copying.

10

Host

QEMU

Guest

IVShmem

IVSS

POSIX

shmem

IVTrace

A ring buffer IVRing is

constructed on IVShmem

Shmem is shared with IVTrace

Notify to IVTrace

using eventfd

Read trace data

From shmem

SystemTap

SystemTap driver

Writes data into ringbuffer

© Hitachi, Ltd. 2012. All rights reserved.

Result

 The case of no contentions

11

© Hitachi, Ltd. 2012. All rights reserved.

Result

 The case of no contentions

12

© Hitachi, Ltd. 2012. All rights reserved.

Result2

 The case of contentions. I/O slowdown

13

© Hitachi, Ltd. 2012. All rights reserved.

Result2

 The case of contentions. I/O slowdown

14

I/O start I/O finish

Disturb

Guest1’s

request

© Hitachi, Ltd. 2012. All rights reserved.

Proposal of IVRing on LKML

 Maintainers Don’t like it

 Points

– NO “yet another ring buffer” in linux kernel
• Use ftrace and perf ring buffer for guest recording

– Use virtio instead of ivshmem

(2012/06/06 8:22), Greg Kroah-Hartman wrote:

> On Wed, Jun 06, 2012 at 07:03:06AM +0800, Anthony Liguori wrote:

>> On 06/05/2012 09:10 PM, Borislav Petkov wrote:
>>>

>>> Yet another ring buffer?
>>>
>>> We already have an ftrace and perf ring buffer, can't you use one of those?
>>

>> Not to mention virtio :-)
>>
>> Why not just make a virtio device for this kind of thing?
>

> Yeah, that's exactly what I was thinking, why reinvent things again?

15

© Hitachi, Ltd. 2012. All rights reserved.

Virtio Candidates

 Virtio-shmem (new device)

– Virtio device which provides APIs for assigning the guest
pages to shared memory in host
• Guest can assign any page to host’s shmem

• Qemu remaps original pages with the pages on shared memory

• Similar to the ivshmem, but no big PCI address space required

 Virtio-serial with splice (enhancement)

– Virtio device which provides chardev interface for guest
• Guest can “splice” its data into the char device

• Qemu copies data page to host-side pipe

• Vhost can offload the copying process

16

© Hitachi, Ltd. 2012. All rights reserved.

Virtio-shmem Overview

 Export Ftrace ring-buffer pages directly to host

– How we can export per-cpu kmalloc object?

Guest

Ring Buffer
(ftrace)

Virtio-ring

Virtio-shm driver

Qemu

Read and
write (copy)

Host

Reader Storage

(1) Get the
ftrace Ring
Buffer Pages

(2) Pass the
pages to host

(3) Allocate a
POSIX shmem

Shadow
Page
Table

(4) Modify shadow
PT to swap given
pages with shm
pages

(#)Setup

Read

Slab and per-cpu
info must be
shared

Can we correctly recognize readable
pages?

Can we use perf RB
too?

17

POSIX shmem->

© Hitachi, Ltd. 2012. All rights reserved.

Ftrace reader kthread

Virtio-shmem w/ RB Overview

 To generalize interface and guarantee memory coherency

– At first, we have simple ring-buffer for memory coherency

Guest

Ring Buffer
(ftrace)

Virtio-ring

Virtio-shm driver

Remove a
page from RB

Copy the page to
simpleRB with barrier

Qemu

Read and
write (copy)

Host

Reader Storage

Simple RB

(1) Allocate
pages for shm

(2) Pass the
pages to host

(3) Allocate a
POSIX shmem

Shadow
Page
Table

(4) Modify shadow
PT to swap given
pages with shm
pages

(#)Setup

Read

This still use yet
another ring buffer on
shmem!

2 copies v.s. no
interaction

18

© Hitachi, Ltd. 2012. All rights reserved.

Ftrace reader agent

Virtio-serial w/ splice overview

 Virtio-serial opens chardev in the guest and FIFO(named pipe)
in the host

Guest

Ring Buffer
(ftrace)

Pipe

Virtio-ring

Virtio-console
driver

Remove a
page from RB

splice to pipe
(no copy) Pass the page

to virtio-ring

Qemu

FIFO

Copy the page
to Linux pipe

Host Reader

Storage

Splice to file
(no copy)

Splice multiple page at
once. Per-page virtio
is too heavy

19

splice from
pipe to virtio
(no copy)

Virtio-serial bus

© Hitachi, Ltd. 2012. All rights reserved.

Comparison

IVRing Virtio-serial w/

splice

Virtio-shmem w/

simpleRB

Virtio-shmem

Qemu-Reader Shmem Pipe (1way) Shmem Shmem

Guest-Qemu Shmem(PCI) virtio Shmem(EPT) Shmem(EPT)

of Copies 1 (reader to file) 1 (virtio to pipe) 2 (in Guest, reader

to file)

1 (reader to file)

Guest-host

interaction

No Once per I/O

(16pages or more)

No No

Supported tracer SystemTap Ftrace, user tools Ftrace, and others? Ftrace only

No another RB IVRing No Simple RB No

Use virtio No Yes Hmm... Hmm...

Buffer Resize No Support Support Support

SMP scaling RB w/ lock Per-cpu pipes Per-cpu shmem Per-cpu shmem

VCPU hot-add Support (w/lock) Add channels Add shmem Add shmem

Live migration No Possible Possible Possible

Expectation Not scalable, not

acceptable

Upstream

Acceptable

Need

Discussion

Need

Discussion

20

© Hitachi, Ltd. 2012. All rights reserved.

Comparison

IVRing Virtio-serial w/

splice

Virtio-shmem w/

simpleRB

Virtio-shmem w/o

simpleRB

Qemu-Reader Shmem Pipe (1way) Shmem Shmem

Guest-Qemu Shmem(PCI) virtio Shmem(EPT) Shmem(EPT)

of Copies 1 (reader to file) 1 (virtio to pipe) 2 (in Guest, reader

to file)

1 (reader to file)

Guest-host

interaction

No Once per I/O

(16pages or more)

No No

Supported tracer SystemTap Ftrace, user tools Ftrace, and others? Ftrace only

No another RB IVRing No Simple RB No

Use virtio No Yes Hmm... Hmm...

Buffer Resize No Support Support Support

SMP scaling RB w/ lock Per-cpu pipes Per-cpu shmem Per-cpu shmem

VCPU hot-add Support (w/lock) Add channels Add shmem Add shmem

Live migration No Possible Possible Possible

Expectation Not scalable, not

acceptable

Upstream

Acceptable

Need

Discussion

Need

Discussion

21

Chosen method
・Simple implementation
・No claiming points
・Fit to virtio framework

© Hitachi, Ltd. 2012. All rights reserved.

Trace Agent

Virtio-trace(serial w/ splice) Prototype

 Prototype consists of trace-agent, virtio-console driver,
virtio-pipe device, and trace-cmd

Guest

Ring Buffer
(ftrace)

Virtio-ring

Virtio-console
driver

- Create a channel for 9pfs control
- Create a channel for Agent control
- Create channels for trace data

- Open percpu trace_raw and pipe
- Splice trace data to serial channel

Qemu

Pipe

Host

Trace-cmd

Storage Control Agent via
control pipe

Virtio-serial
device

22

Diod+socat
9pfs server

- Export guest’s debugfs
 by diod + socat

9pfs
mount

Mount guest’s debugfs

Splice per-cpu
buffer to the file

Pipe

Pipe

Pipe

Get event format data
Enable/disable tracing

- Open named pipe for 9pfs
- Open named pipe for agent
- Open named pipes for data
- Copy the page to Linux pipe

© Hitachi, Ltd. 2012. All rights reserved.

Performance Measurement

 Compared with IVRing, virtio-trace is really fast?

– Running UnixBench with tracing on guest VM

23

28807569.5 28685049.5 28418595.5

13262258.7

0.00% 0.43% 1.35% 53.96%

No trace virtio-trace ivring virtio-serial

UnixBench

scores overhead(%)

Compared with ivring, virtio-trace has lower overhead!

Host:
Xeon x5660
2.8Ghz/48GB

Guest:
Single-Core VM
1GB

Tracing:
Scheduler and
Syscall events

© Hitachi, Ltd. 2012. All rights reserved.

Virtio-trace on LKML

 Maintainers accept it

 Points

– NO “yet another ring buffer” in linux kernel
• Use virtio ring for passing data

– More generic feature (not only for tracing)
• Maybe useful for other use, like SPICE

On Thu, 09 Aug 2012 21:30:29 +0900, Yoshihiro YUNOMAE <yoshihiro.yunomae.ez@hitachi.com> wrote:
> Hi All,
>
> The following patch set provides a low-overhead system for collecting kernel
> tracing data of guests by a host in a virtualization environment.

Thankyou!

I've applied this, and it will head into linux-next in the next few
days.

Cheers,
Rusty.

24

© Hitachi, Ltd. 2012. All rights reserved.

TODOs

 So, what is the next step?

– Synchronize time-stamp between guest and host
• Tsc-based trace_clock is an option (for constant_tsc machine)

• Or agent gives the guest’s trace_clock offset (but how?)

– In generic, vmexit pattern matching can give us a hint.

– Consolidate 9pfs server to trace-agent
• For simplicity and ease of use (reducing steps of setup)

• We can prepare setup script for guest tracing

– Fix some issues on Qemu’s chardev(serial backend)
• Hotplug issue

• Guest blocking issue

– Live migration support

25

© Hitachi, Ltd. 2012. All rights reserved.

Conclusion

 IVRing is not acceptable for upstream

 Improved virtio-serial to support splice is accepted

– Build the prototype and measure the performance

 Still under development...

– Make setup easier

– Time synchronizing

– Clarify “chardev” issues on Qemu

– Fix Qemu chardev for CPU-hotplug
and non-blocking

26

© Hitachi, Ltd. 2012. All rights reserved.

Previous Talks

 See, IVTrace slide @ LinuxCon Japan 2012

– Low-Overhead Ring-Buffer of Kernel Tracing
http://events.linuxfoundation.org/images/stories/pdf/lcjp2012_yunomae.pdf

– Tracing Across Host OS and Guest OS
http://events.linuxfoundation.org/images/stories/pdf/lcjp2012_nagai.pdf

27

http://events.linuxfoundation.org/images/stories/pdf/lcjp2012_yunomae.pdf
http://events.linuxfoundation.org/images/stories/pdf/lcjp2012_nagai.pdf

© Hitachi, Ltd. 2012. All rights reserved.

Legal Statements

 Linux is a registered trademark of Linus Torvalds.

 UNIX is a registered trademark of The Open Group.

 All other trademarks and copyrights are the property of their

respective owners.

28

