
© 2014 IBM Corporation

First Failure Data Capture (FFDC)
for Linux
on the Mainframe

Michael Holzheu

Linux Tracing Summit 13/10/2014

FFDC!

traces!
dumps!

snapshots!



© 2014 IBM Corporation2

Notes:  
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment.  The actual throughput that any user will experience will vary 
depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.  Therefore, no assurance can  be given 
that an individual user will achieve throughput improvements equivalent to the performance ratios stated here. 

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of  the manner in which some customers have used IBM products and the results they may have achieved.  Actual 
environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States.  IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice.  
Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements.  IBM has not tested those products and cannot confirm the performance, compatibility, or any 
other claims related to non-IBM products.  Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice.  Contact your IBM representative or Business Partner for the most current pricing in your geography.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries. 
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce. 
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries. 
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. 
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. 
Windows Server and the Windows logo are trademarks of the Microsoft group of countries.
ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office. 
UNIX is a registered trademark of The Open Group in the United States and other countries. 
Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom. 
Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries. 

The following are trademarks or registered trademarks of other companies.

* Other product and service names might be trademarks of IBM or other companies. 

* Registered trademarks of IBM Corporation

AIX*
BladeCenter*
DataPower*
DB2*
FICON*
GDPS*
HiperSockets

IBM*
IBM eServer
IBM (logo)*
InfiniBand*
Parallel Sysplex*
POWER*
POWER7*

PowerVM
PR/SM
Smarter Planet
System x*
System z*
System z9*

System z10
WebSphere*
z9*
z10 BC
z10 EC
zEnterprise
zEC12

z/OS*
zSeries*
z/VM*
z/VSE

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions 
worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the 
Web at Copyright and trademark information  at www.ibm.com/legal/copytrade.shtml.  

Trademarks & Disclaimer



© 2014 IBM Corporation3

The FFDC Concept

Proposal

Action Plan



© 2014 IBM Corporation4

Motivation

 A symptom was detected
– Which problem lead to the symptom?
– In which component did the problem occur?
– What was the root cause for the problem?
– Which sequence of operations triggered to the problem?

 Current approach
– Live debugging
– Increase debug levels
– Do additional tests with the system
– Reproduce problem

 What if this is not possible? (enterprise server, embedded...)
– Automatically record the required information
– Always collect enough information to reconstruct the history of the error
– FFDC is a concept to achieve this



© 2014 IBM Corporation5

What is FFDC? 65500?

 FFDC = First Failure Data Capture

 In case of a problem
– The problem is detected (automatically)
– All data needed to analyze the problem is available
– Data gets collected immediately after problem symptom detection

 Data for the first occurrence of a problem must be preserved

 FFDC data collection executes in rare cases

 Working FFDC means, no need to ...
– replay a problem situation
– configure any FFDC setting

 FFDC must be available for all relevant components of your product
– Relevant kernel components
– Relevant user space processes



© 2014 IBM Corporation6

Examples for available FFDC

 Android: 
– Crash reports
– Stack backtrace

 KDE bug reports

 Windows blue screen:
– IBM bluescreen capturing

 Linux manual FFDC:
– Redhat: sosreport

 System z firmware:
– IQYYLOG and SE
– Call home



© 2014 IBM Corporation7

Constraints

 FFDC is only possible by adding overhead

 FFDC overhead must not cost too many resources
– limited time to recovery
– limited CPU usage
– limited memory usage
– limited disk storage usage
– limited network bandwidth

 2% overhead for all resources might be acceptable?



© 2014 IBM Corporation8

What do we need for FFDC?

 Perfect: (?)
– Get all data

• Record every state change
• Dump complete state

– Detect all possible errors

 Doable:
– Get relevant data

• History: Trace component entry/exit points with relevant parameters
• State: Dump component control structures
• Partitioning/Relationship: Collect only data for affected components

– Detect relevant errors
• Define error classes & actions
• Define what has to be collected for which error class

 Advantages of doable approach:
– Reduced runtime overhead, downtime & disruptiveness
– Less data to analyze



© 2014 IBM Corporation9

What we have?
Types of debugging data

 Logs:
Short messages written by a running system to non-volatile storage cover whole history of 
the system (or at least a long period). Includes events known to have long term relevance 
(e.g. configuration changes). Log messages are targeted primarily at system 
administrators.

 Traces:
A trace provides a means to create a component-local sequence of timestamped short 
entries related to events that may be relevant for debugging purposes. A trace often is 
not persistent (wrap-around buffers). Single trace entries may have no relevance. Traces 
can have a high frequency.

 Dumps:
Point-in-time copy of the state (memory, registers) of a process or operating system which 
is created without assistance of the component being dumped. Examples for dumps: core 
dump (user space), kdump (operating system dump)



© 2014 IBM Corporation10

What is missing?
Types of debugging data

 Component state-save (snapshot/dump):
Component-assisted point-in-time copy of selected component-internal state data, 
annotated with meta-data.

 FFDC Log:
The FFDC Log provides a means to create a global sequence of timestamped messages 
related to events that may be relevant for debugging purposes. The FFDC log is 
persistent.  FFDC log messages are targeted at developers or service personal, not 
primarily system administrators.

 FFDC Statistics:
Aggregated counters or counter rate. Used to reduce trace data amount. Not the same as 
performance statistics.



© 2014 IBM Corporation11

What is missing?
FFDC transport and repository mechanism

 FFDC snapshots
– Persistent collection of debugging data including descriptive meta-data
– Snapshots can contain all kinds of debugging data (logs, traces, state save, dumps).

 FFDC repository
– Persistent data store for FFDC snapshots 
– Interface to manage (list, delete, report...) snapshots

 FFCD snapshot API
– For transport of debugging data to FFDC repository
– Kernel API
– User space API (library, CLI, different language bindings)



© 2014 IBM Corporation12

What is FFDC?

Proposal

Action Plan



13   © 2014 IBM 
Corporation

FFDC snapshot runtime

Kernel

Snapshot daemon

Component 1Component 1Component

Snapshot API

Push snapshots
FFDC snapshot

repository

Store



14   © 2014 IBM 
Corporation

FFDC snapshot runtime

Kernel

Snapshot daemon

Component 1Component 1Component

Userspace

Component 1Component 1Component

Snapshot API

Snapshot API

Push snapshots

Push snapshots

FFDC snapshot
repository

Store



15   © 2014 IBM 
Corporation

Userspace

FFDC snapshot runtime

Kernel

Monitor

Snapshot daemon

Component 1Component 1Component

Userspace

Component 1Component 1Component

Request snapshot (trigger/pull)

Snapshot API

Snapshot API

Push snapshots

Push snapshots

Request snapshot (trigger/pull)

FFDC snapshot
repository

Store

Snapshot API



16   © 2014 IBM 
Corporation

Userspace

FFDC snapshot runtime

Kernel

Monitor

Snapshot daemon

Component 1Component 1Component

Userspace

Component 1Component 1Component

Request snapshot (trigger/pull)

Snapshot API

Snapshot API

Push snapshots

Push snapshots

Request snapshot (trigger/pull)

FFDC snapshot
repository

Store

Snapshot API

Manage snapshots
List
Delete
Extract
Report

Reporting/Housekeeping



17   © 2014 IBM 
Corporation

FFDC snapshot/state-save API

■ Register FFDC component (struct ffdc_info)
– struct ffdc_info
– struct ffdc_info *ffdc_register(const char *id, ...);

■ Create snapshot (struct ffdc_snap)
– struct ffdc_snap;
– struct ffdc_snap *ffdc_snap_begin(struct ffdc_info *ffdc_info, 
const char *reason, ...);

– void ffdc_snap_add_meta(struct ffdc_snap *ffdc_snap, const char 
*key, const char *value, ...);

– void ffdc_snap_add_blob(struct ffdc_snap *ffdc_snap, const char 
*type, void *buf, size_t len);

– void ffdc_snap_end(struct ffdc_snap *ffdc_snap);

■ FFDC snapshot callback (ffdc_snap_cb)
– typedef void (*ffdc_snap_cb)(struct ffdc_snap *snap, void *data);
– int ffdc_snap_register(struct ffdc_info *ffdc_info, ffdc_snap_cb 
snap_cb, void *data);



© 2014 IBM Corporation18

<component>/<timestamp>/meta
                        0.blob
                        0.meta
                        1.blob
                        1...

Kernel component snapshot/state-save

 Saves relevant component state

 Consistent data view (uses component locking)

 Debugfs: /sys/kernel/debug
– Kernel component initiated

• ffdc/snapshot_stream
• Read by snapshot daemon

– User space initiated (e.g. by a monitor)
• ffdc/<component>/snapshot
• Uses snapshot callback

 Key/value ASCII meta data + binary data 

 CPIO archive



© 2014 IBM Corporation19

What is FFDC?

Proposal

Action Plan



© 2014 IBM Corporation20

What to do for better Linux FFDC?

 Define FFDC recommendations
– Which tracepoints should be enabled?
– How much overhead is acceptable?
– Which error classes?

 Enable traces for FFDC
– Define initial trace settings
– Allow access for snapshots

 Define component relationship and namespace

 Define relevant component state (state-save)

 Define snapshot transport
– snapshot API, runtime and repository



© 2014 IBM Corporation21

Thank you!


	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

