
Hardware Traces - The Ultimate Linux

Performance Tuning Tool

Dusseldorf, Germany, October 2014

Al Grant (ARM) and Mathieu Poirier (Linaro)

Slide 2

This is a Two Part Presentation

● First half:
○ Brief overview of the Coresight technology
○ The sort of problems it can solve
○ Practical challenges
○ External trace capture

● The second half:
○ Coresight support in the Linux kernel
○ Where we are at in the upstreaming process
○ What we are expected to work on next

Slide 2

System on Chip (SoC)

(image courtesy UBM TechInsights via AnandTech)

How do we debug this?
How do we observe what’s going on?
How do we relate hardware events to software?

Slide 2

SoC simplified

core #0 core #1

on-chip interconnect

DMC

DRAM

PCIe

Slide 2

CoreSight on-chip debug and trace

core #0 core #1

on-chip interconnect

DMC

DRAM

PCIe

ETM ETM

STM

ETR

ETB

TPIU

cross
trigger

CoreSight components can be accessed via
- external JTAG (not shown)
- on-chip memory-mapped access

dedicated trace buffer

trace capture unit
trace to
main memory

trace
funnel

Slide 2

What can be traced?

● Core instruction trace (ETM/PTM)
○ explained in more detail later
○ about ~1Gbit/s to ~10Gbit/s per core when active

● Software instrumentation
○ by writing to CoreSight STM or ITM
○ STM uses MIPI STPv2 trace protocol

● Selected hardware events
○ if input to CoreSight STM (SoC specific)

● other SoC-specific trace sources
○ might or might not be exposed for end-user use

● each trace source is identified by a 7-bit identifier
● multiplexed together by trace funnels

Slide 2

ETM/PTM naming (a digression)

● Each ETM/PTM unit traces the activity of a single core
○ all ARM cores have had an ETM, since forever...

● ETM, PTM, what’s the difference?
○ ETM v3.x (example: ARM1176, Cortex-A7)

■ instruction trace: one trace element per instruction
○ PTM v1.x (example: Cortex-A9, Cortex-A15)

■ program flow trace: one trace element per branch
■ allows trace to keep up with GHz core speeds

○ ETM v4 (example: Cortex-A53, Cortex-A57)
■ offers both options, but for A-profile is more PTM-like

● Think of PTM as “the one in between ETMv3 and ETMv4”
○ we can just talk about ETM from now on...

Slide 2

Programming the ETM

● ETM outputs trace when active
● Active/inactive state is determined by

how ETM is programmed:
○ address comparators
○ user/privileged state
○ start/stop events
○ sequencer state
○ CONTEXTID/VMID matching

● ETM can be programmed only when

disabled
● Each core has its own ETM

active inactive

disabled

power
down

enabled

Slide 2

Decoding ETM

● ETM is highly compressed
○ Logically: address of every executed instruction
○ Actually: 1 bit per conditional branch

● To reconstruct instruction stream, we need the code
● For kernel, mostly easy

○ code modification (dynamic ftrace)
○ loadable kernel modules

● For userspace, need to know current address space and

map of that address space
○ CONTEXTID can help but use is optional

● Generally, we need metadata

Slide 2

So what can we do with ETM?

● Targeted tracing for performance investigations
○ use ETM filtering to activate trace round region of interest

● Sampling profiler/coverage tool
○ repeatedly capture trace fragments
○ accurately measures basic block execution times
○ use “shotgun sequencing” to construct a larger profile

● First-failure data capture
○ capture rolling trace into buffer from boot time onwards
○ stop capture when fault is detected

Slide 2

ETM strengths and challenges

● Strengths
○ it’s non-invasive

■ can be enabled all the time
■ can be programmed to activate/deactivate itself round

regions of interest
○ traces interrupt-disabled code, exceptions etc.
○ traces multiple cores

● Challenges
○ decoding requires access to program image
○ high bit rate might quickly fill up buffer

Slide 2

ETM for kernel tuning

Slide 2

ETM for kernel tuning

Slide 2

STM - software trace macrocell

● Injects software-generated messages into the trace stream
● Messages generated by writing to stimulus port area
● Stimulus port area likely to be relatively fast

○ faster than CoreSight device programming registers
● Messages can be timestamped with CoreSight timestamp
● Messages can be blocking or non-blocking
● Message id and options determined by address
● Stimulus port area can be mapped page by page

○ pages can be mapped into userspace
● Overall cost: generating and storing message data

○ tens of cycles
● No d-cache pollution!

Slide 2

STM - software trace macrocell

Slide 2

Where can trace be captured?

ETB
(typically
8K - 32K)

main memory
(example 4MB)

off-chip trace capture unit (e.g. 4GB)

but… trace can be read out of in-memory buffers and saved on disk etc.

Slide 2

Trace bit rate and buffer size

10Kbit/s 10 Gbit/s1 Gbit/s1 Mbit/s

STM
ETM

8Gb

8Mb

8Kb

10s

1hour

ETB
10ms

RAM

10us

software instrumentation instruction trace

PCIe,
USB...

CoreSight trace is becoming more practical and accessible!

Slide 2

 Coresight Support in the Linux Kernel

● Linaro has been working on Coresight since March 2014
● Started from the initial framework submitted by Pratik Patel

in December of 2012 [1]
● The framework provides support for:

○ source: ETM v3.3 to v3.5 and PTM v1.0, v1.1
○ link: 8 port funnel and non-configurable replicator
○ sink: ETBv1.0, TPIU and TMC (Trace Memory Ctrl)

● Support for STM and CTI will be submitted when the base

framework is accepted

Slide 2

Coresight Framework Highlights

● Provides an easy integration via DT for any platform with

generic components
● Plenty of flexibility for addition of new, non-generic devices
● Access to configuration registers via sysfs
● Processor state (hibernation) decoupled from ETM/PTM

configuration
● Multiple configuration of source and sink is supported
● Provides interface for reporting the status of various

component and the gathering of metadata

Slide 2

Where to Get the Code

● Official Coresight Branch on git.linaro.org:
○ https://git.linaro.org/kernel/coresight.git
○ Always look at the master branch for the latest code
○ Code is always based on the latest kernel release
○ Everything is under drivers/coresight
○ Menuconfig option is under

 “Kernel Hacking/Coresight Tracing Support”

● Earlier submission and initial RFC are also present
● Google “Coresight framework and drivers” for discussions

https://git.linaro.org/kernel/coresight.git

Slide 2

Documentation and Examples

● Documentation lives under:
○ Documentation/trace/coresight.txt
○ Documentation/devicetree/bindings/arm/coresight.txt

● Two sessions at Linaro Connect [2,3]

● Example of a simple use case scenario and how to use the

framework is documented here [4]
○ That example is for ARM’s TC2 board but has been

proven to work on Huawei’s D01 platform.
● There is also a more generic blog post here [5]

Slide 2

What is Next

● Priority is on upstreaming of framework and support for base
components

● Concurrently:
○ Support for Qualcomm’s APQ80x4 and TI’s UEVM5432
○ Support for STM32 on ARM’s V8 Juno platform

● On a longer term, drivers for
○ Cross Trigger Interface (CTI)
○ STM500

Slide 2

Questions and Comments

[1].http://lists.infradead.org/pipermail/linux-arm-kernel/2012-December/138028.html

[2].http://lcu14.zerista.com/event/member/137703

[3].http://lcu14.zerista.com/event/member/137708

[4].https://wiki.linaro.org/WorklingGroups/Kernel/Coresight/traceDecodingWithDS5

[5].http://www.linaro.org/blog/core-dump/coresight-initial-steps-supporting-hw-assisted-tracing-linux-arm-

socs/

http://lists.infradead.org/pipermail/linux-arm-kernel/2012-December/138028.html
http://lcu14.zerista.com/event/member/137703

	Hardware Traces - The Ultimate Linux Performance Tuning Tool
	This is a Two Part Presentation
	System on Chip (SoC)
	SoC simplified
	CoreSight on-chip debug and trace
	What can be traced?
	ETM/PTM naming (a digression)
	Programming the ETM
	Decoding ETM
	So what can we do with ETM?
	ETM strengths and challenges
	ETM for kernel tuning
	ETM for kernel tuning
	STM - software trace macrocell
	STM - software trace macrocell
	Where can trace be captured?
	Trace bit rate and buffer size
	Coresight Support in the Linux Kernel
	Coresight Framework Highlights
	Where to Get the Code
	Documentation and Examples
	What is Next
	Questions and Comments

