Hardware Traces - The Ultimate Linux
Performance Tuning Tool

Dusseldorf, Germany, October 2014

Al Grant (ARM) and Mathieu Poirier (Linaro)

__Linaro

This I1s a Two Part Presentation

e First half:
o Brief overview of the Coresight technology
o The sort of problems it can solve
o Practical challenges
o External trace capture

e The second half:
o Coresight support in the Linux kernel
o Where we are at in the upstreaming process
o What we are expected to work on next

Linaro
o

System on Chip (SoC)

SO T ETRIEI T CTC IV CFCATUT TP EE - = W P A e AR
TITTTTTTTTTTTTTTT —— :

s

~ e
oo Suspected
- — -~ usB

| |
|
]
]
E]
B
]
"

O

(image courtesy UBM Techlnsights via AnandTech)
How do we debug this?
How do we observe what's going on?
How do we relate hardware events to software?

Linaro
A

SoC simplified

core #0

@

core #1

=

on-chip interconnect

J

DMC

e
VY

DRAM

Linaro
.

3

CoreSight on-chip debug and trace

ETM

[core #0

@

ETM

[core #1

=

Cross
trigger

ST™M trace
ﬁ funnel

on-chip interconnect

J iR
SMC y ETR

e

(Mo

/ dedicated traceé
/ TPIU

» buffer

U

DRAM

Linaro
.

3 KD

frace to e

main memory

CoreSight components can be accessed via
external JTAG (not shown)
on-chip memory-mapped access

trace capture unit

What can be traced?

Core instruction trace (ETM/PTM)

o explained in more detalil later

o about ~1Gbit/s to ~10Gbit/s per core when active
Software instrumentation

o by writing to CoreSight STM or ITM

o STM uses MIPI STPv2 trace protocol

Selected hardware events

o if input to CoreSight STM (SoC specific)

other SoC-specific trace sources

o might or might not be exposed for end-user use
each trace source is identified by a 7-bit identifier
multiplexed together by trace funnels

Linaro
"

ETMIPTM naming (a digression)

e Each ETM/PTM unit traces the activity of a single core
o all ARM cores have had an ETM, since forever...
e ETM, PTM, what's the difference?
o ETM v3.x (example: ARM1176, Cortex-A7)
B nstruction trace: one trace element per instruction
o PTM vl1.x (example: Cortex-A9, Cortex-Al5)
B program flow trace: one trace element per branch
m allows trace to keep up with GHz core speeds
o ETM v4 (example: Cortex-A53, Cortex-A57)
m offers both options, but for A-profile is more PTM-like
e Think of PTM as “the one in between ETMv3 and ETMv4”
o we can just talk about ETM from now on...

Linaro
o

Programming the ETM

ETM outputs trace when active
Active/inactive state is determined by
how ETM Is programmed:

address comparators
user/privileged state

start/stop events

sequencer state
CONTEXTID/VMID matching
ETM can be programmed only when
disabled

Each core has its own ETM

O O O O O

Linaro
"

/

.

enabled

~

N7

power
down

Decoding ETM

ETM is highly compressed

o Logically: address of every executed instruction

o Actually: 1 bit per conditional branch

To reconstruct instruction stream, we need the code

For kernel, mostly easy

o code modification (dynamic ftrace)

o loadable kernel modules

For userspace, need to know current address space and
map of that address space

o CONTEXTID can help but use is optional

Generally, we need metadata
‘_Linaro

So what can we do with ETM?

e Targeted tracing for performance investigations

o use ETM filtering to activate trace round region of interest
e Sampling profiler/coverage tool

O repeatedly capture trace fragments

o accurately measures basic block execution times

o use “shotgun sequencing” to construct a larger profile
e First-failure data capture

o capture rolling trace into buffer from boot time onwards

o stop capture when fault is detected

Linaro
"

ETM strengths and challenges

e Strengths
o It’s non-invasive
B can be enabled all the time
B can be programmed to activate/deactivate itself round
regions of interest
o traces interrupt-disabled code, exceptions etc.
o traces multiple cores
e Challenges
o decoding requires access to program image
o high bit rate might quickly fill up buffer

Linaro
"

ETM for kernel tuning

31] (cpu2) —= vector_swi

32] (cpu2) @c000ccel:TMB 0000b092 SUB sp,sp#0x48
35] (cpu2) @c000cce2:TMB eB8d1ff STM sp.{r0-r12}

44 1 (cpu2) @c000cceb:TMB 0000468 MOV rB.sp

45] (cpu2) @c000cced TMB f3efdall MRS r0APSR ;formerly
CPSR

47] (cpu2) @c000ccec:TMB fi8alalc EOR r10.r10,#0xc
50] (cpul) @c000ccf0:-TMB f38a8100 MSR CPSE_c,ri
85] (cpu2) @c000ccf4-TMB f8c8d034 STR sp,[r8 #0x34]
56] (cpul) @c000ccfa:TMB fac8e038 STR Ir,[r8 #0x38]
56] (cpu2) @c000ccfc:TMB f08al0alc EOR r10.r10,#0xc
59] (cpul) @c000cd00:TMB f38a8100 MSR CPSRE_c.r10
64] (cpu2) @c000cd04:TMB f3f8800 MRS r3,SPSR

65] (cpu2) @c000cd08:TMB fBcdel3c STR I [sp.#0x3c]
66] (cpu2) @c000cdlc:TMB ficdB040 STR B, [sp,#0x40]
67] (cpu2) @c000cd10:TMB 00009011 STR rl [sp,#0xd4d)]

71] (cpu2) @c000cd12:TMB fadfclac LOR 2 {pci+0xae ;
0xc000cdch

76] (cpu2) @c000cd16:TMB f8dcc000 LDR r12,[r12.£0]
771 (cpu2) @c000cd1aTMB ee01cfl0 MCR p15.:#0x0.r12.c1,c0.£0
83] (cpu2) @c000cd1e-TMB e92d500f PUSH {r0-r3,r12.Ir}

86] (cpu2) @c000cd22: TMB f049fa09 BL {pcl+0x49416
0xc0056138

86] (cpu2) @c000cd22:BR. c0056138
86 | (cpu2) —= trace_hardirgs_on

AT7: 35 cycles

Linaro
o

96 1 {cpul) —= vector_swi

96+] (cpul) @c000cce0:TMB 00006092 SUB sp,sp#0x48

96+] (cpul) @c000cce2:TMB e88d1ff STM sp,{r0-r12}

96+] (cpul) @c000cceb:TMB 00004668 MOV i sp

96+] (cpul) @c000cced:TMB f3eféall MRS r0.APSR ; formerly
CPSR

96+] (cpul) @c000ccec:TMB f08alalc EOR r10,r10 #0xc

(cpul)
96+] (cpul) @c000ccf0:TMB 3828100 MSR CPSRE_c.ri
96+] (cpul) @c000ccf4:TMB féc8d034 STR sp.[r8,#0x34]
96+] (cpul) @c000ccfa:TMB facBel38 STR Ir,[r8,#0x38]
896+] (cpul) @c000ccfc:TMB f08alalc EOR r10.r10 #0xc
96+] (cpul) @c000cd00:TMBE f38a8100 MSR CPSR_c,ri
96+] (cpul) @c000cd04:TMB f3f8800 MRS r8.SPSR

96+] (cpul) @c000cd08:TMB fBcdel3c STR Ir,[sp.#0x3c]
96+] (cpul) @c000cd0c:TMB f8cdB040 STR rd,[sp.#0x40]
96+] (cpul} @c000cd10:-TMB 00009011 STR 0, [sp#0x44]

96+] (cpul) @c000cd12:-TMB fodfclac LDR 12 {pc}+lxae ;
0xc000cdcO

96+] (cput) @c000cd16-TMB 8dcc000 LDR r12,[r12,20]
96+] (cpu1) @c000cd1aTMB ee01cH0 MCR p15.#0x0.r12.c1.c0.#0
96+] (cput) @c000cd1e-TMB e92d500f PUSH {r0-r3.r12,r}

96+] (cpul) @c000cd22:TMB f049fa09 BL {pci+0x49416
0xc0056138

299 J(cpul) @c000cd22:BR c0056138
299] (cpul) = trace_hardirgs_on

A15: 203 cycles!
(PTM: waypoint timings only)

ETM for kernel tuning

update_rg clock.part.8’

“““ > DME ISH

_raw_spinf;ggg
e.constprop. 98

activate_task™

----- >

sched _clock_cpu

enqueue_task_rt’- _____
degueue_rt_stack

ISE e o g

-

LS |

STM - software trace macrocell

Injects software-generated messages into the trace stream
Messages generated by writing to stimulus port area
Stimulus port area likely to be relatively fast

o faster than CoreSight device programming registers
Messages can be timestamped with CoreSight timestamp
Messages can be blocking or non-blocking

Message id and options determined by address

Stimulus port area can be mapped page by page

O pages can be mapped into userspace

Overall cost: generating and storing message data

o tens of cycles

No d-cache pollution!

Linaro
"

STM - software trace macrocell

r i
trace | user i
decoder perf tools i apps i_\:} STM
e ! library
userspace I/

! -]
i device i char driver |

kernel : drivers |
: | - | STM driver
' — i erne
: 1 9

. i 50C bus ! trace direct
device | access i mapped
tree :] trace decode
i- driver framework i metadata |
HYP chan
manager

hardware e v . N Y.,
1 H 1 i
i ETM, ETB, STM i i STM stimulus i
1 H ! 1
| (registers) etc. E | ports i
e i e :

Key:
New component Modified component

Linaro
R,

Where can trace be captured?

1}

ETB

(typically
8K - 32K)

main memory
(example 4MB)

off-chip trace capture unit (e.g. 4GB)

but... trace can be read out of in-memory buffers and saved on disk etc.

Linaro
"

Trace bit rate and buffer size

8Kb

ETB

10Kbit/s 1 Mbit/s 1 Gbit/s 10 Gbit/s

< STM —> ETM

\ software instrumentation instruction trace

Linaro CoreSight trace is becoming more practical and accessible!
g

Coresight Support in the Linux Kernel

Linaro has been working on Coresight since March 2014
Started from the initial framework submitted by Pratik Patel
iIn December of 2012 [1]

The framework provides support for:

o source: ETM v3.3tov3.5and PTMv1.0, vl.1

o link: 8 port funnel and non-configurable replicator

o sink: ETBv1.0, TPIU and TMC (Trace Memory Ctrl)

Support for STM and CTI will be submitted when the base
framework Is accepted

Linaro
"

Coresight Framework Highlights

Provides an easy integration via DT for any platform with
generic components

Plenty of flexibility for addition of new, non-generic devices
Access to configuration registers via sysfs

Processor state (hibernation) decoupled from ETM/PTM
configuration

Multiple configuration of source and sink is supported
Provides interface for reporting the status of various
component and the gathering of metadata

Linaro
"

Where to Get the Code

e Official Coresight Branch on git.linaro.org:

o https://qgit.linaro.org/kernel/coresight.git
Always look at the master branch for the latest code
Code Is always based on the latest kernel release
Everything is under drivers/coresight
Menuconfig option is under

“Kernel Hacking/Coresight Tracing Support”

e Earlier submission and initial RFC are also present
e Google “Coresight framework and drivers” for discussions

Linaro
"

https://git.linaro.org/kernel/coresight.git

Documentation and Examples

Documentation lives under:
o Documentation/trace/coresight.txt
o Documentation/devicetree/bindings/arm/coresight.txt

Two sessions at Linaro Connect [2,3]

Example of a simple use case scenario and how to use the

framework is documented here [4]

o That example is for ARM’s TC2 board but has been
proven to work on Huawei’'s DO1 platform.

There Is also a more generic blog post here [5]
Linaro

What is Next

e Priority is on upstreaming of framework and support for base
components

e Concurrently:
o Support for Qualcomm’s APQ80x4 and TI's UEVM5432
o Support for STM32 on ARM’s V8 Juno platform

e On a longer term, drivers for
o Cross Trigger Interface (CTI)
o STM500

Linaro
"

Questions and Comments

[1].http://lists.infradead.org/pipermail/linux-arm-kernel/2012-December/138028.html
[2].http://lculd.zerista.com/event/member/137703

[3].http://lculd.zerista.com/event/member/137708
[4].https://wiki.linaro.org/WorklingGroups/Kernel/Coresight/traceDecodingWithDS5
[5].http://www.linaro.org/blog/core-dump/coresight-initial-steps-supporting-hw-assisted-tracing-linux-arm-
socs/

Linaro

http://lists.infradead.org/pipermail/linux-arm-kernel/2012-December/138028.html
http://lcu14.zerista.com/event/member/137703

	Hardware Traces - The Ultimate Linux Performance Tuning Tool
	This is a Two Part Presentation
	System on Chip (SoC)
	SoC simplified
	CoreSight on-chip debug and trace
	What can be traced?
	ETM/PTM naming (a digression)
	Programming the ETM
	Decoding ETM
	So what can we do with ETM?
	ETM strengths and challenges
	ETM for kernel tuning
	ETM for kernel tuning
	STM - software trace macrocell
	STM - software trace macrocell
	Where can trace be captured?
	Trace bit rate and buffer size
	Coresight Support in the Linux Kernel
	Coresight Framework Highlights
	Where to Get the Code
	Documentation and Examples
	What is Next
	Questions and Comments

