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This I1s a Two Part Presentation

e First half:
o Brief overview of the Coresight technology
o The sort of problems it can solve
o Practical challenges
o External trace capture

e The second half:
o Coresight support in the Linux kernel
o Where we are at in the upstreaming process
o What we are expected to work on next
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System on Chip (SoC)
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(image courtesy UBM Techlnsights via AnandTech)
How do we debug this?
How do we observe what's going on?
How do we relate hardware events to software?
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SoC simplified
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CoreSight on-chip debug and trace

ETM

[ core #0

@

ETM

[ core #1

=

Cross
trigger

ST™M trace
ﬁ funnel

on-chip interconnect

J iR
SMC y ETR

e

(Mo

/ dedicated traceé
/ TPIU

» buffer

U

DRAM

Linaro
.

3 KD

frace to e

main memory

CoreSight components can be accessed via
external JTAG (not shown)
on-chip memory-mapped access

trace capture unit



What can be traced?

Core instruction trace (ETM/PTM)

o explained in more detalil later

o about ~1Gbit/s to ~10Gbit/s per core when active
Software instrumentation

o by writing to CoreSight STM or ITM

o STM uses MIPI STPv2 trace protocol

Selected hardware events

o if input to CoreSight STM (SoC specific)

other SoC-specific trace sources

o might or might not be exposed for end-user use
each trace source is identified by a 7-bit identifier
multiplexed together by trace funnels
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ETMIPTM naming (a digression)

e Each ETM/PTM unit traces the activity of a single core
o all ARM cores have had an ETM, since forever...
e ETM, PTM, what's the difference?
o ETM v3.x (example: ARM1176, Cortex-A7)
B nstruction trace: one trace element per instruction
o PTM vl1.x (example: Cortex-A9, Cortex-Al5)
B program flow trace: one trace element per branch
m allows trace to keep up with GHz core speeds
o ETM v4 (example: Cortex-A53, Cortex-A57)
m offers both options, but for A-profile is more PTM-like
e Think of PTM as “the one in between ETMv3 and ETMv4”
o we can just talk about ETM from now on...
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Programming the ETM

ETM outputs trace when active
Active/inactive state is determined by
how ETM Is programmed:

address comparators
user/privileged state

start/stop events

sequencer state
CONTEXTID/VMID matching
ETM can be programmed only when
disabled

Each core has its own ETM

O O O O O
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Decoding ETM

ETM is highly compressed

o Logically: address of every executed instruction

o Actually: 1 bit per conditional branch

To reconstruct instruction stream, we need the code

For kernel, mostly easy

o code modification (dynamic ftrace)

o loadable kernel modules

For userspace, need to know current address space and
map of that address space

o CONTEXTID can help but use is optional

Generally, we need metadata
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So what can we do with ETM?

e Targeted tracing for performance investigations

o use ETM filtering to activate trace round region of interest
e Sampling profiler/coverage tool

O repeatedly capture trace fragments

o accurately measures basic block execution times

o use “shotgun sequencing” to construct a larger profile
e First-failure data capture

o capture rolling trace into buffer from boot time onwards

o stop capture when fault is detected
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ETM strengths and challenges

e Strengths
o It’s non-invasive
B can be enabled all the time
B can be programmed to activate/deactivate itself round
regions of interest
o traces interrupt-disabled code, exceptions etc.
o traces multiple cores
e Challenges
o decoding requires access to program image
o high bit rate might quickly fill up buffer
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ETM for kernel tuning

31 ] (cpu2) —= vector_swi

32 ] (cpu2) @c000ccel:TMB 0000b092 SUB  sp,sp#0x48
35 ] (cpu2) @c000cce2:TMB eB8d1ff STM  sp.{r0-r12}

44 1 (cpu2) @c000cceb:TMB 0000468 MOV rB.sp

45 ] (cpu2) @c000cced TMB f3efdall MRS  r0APSR ;formerly
CPSR

47 ] (cpu2) @c000ccec:TMB fi8alalc EOR  r10.r10,#0xc
50 ] (cpul) @c000ccf0:-TMB f38a8100 MSR  CPSE_c,ri
85 ] (cpu2) @c000ccf4-TMB f8c8d034 STR  sp,[r8 #0x34]
56 ] (cpul) @c000ccfa:TMB fac8e038 STR  Ir,[r8 #0x38]
56 ] (cpu2) @c000ccfc:TMB f08al0alc EOR  r10.r10,#0xc
59 ] (cpul) @c000cd00:TMB f38a8100 MSR  CPSRE_c.r10
64 ] (cpu2) @c000cd04:TMB f3f8800 MRS  r3,SPSR

65 ] (cpu2) @c000cd08:TMB fBcdel3c STR I [sp.#0x3c]
66 ] (cpu2) @c000cdlc:TMB ficdB040 STR B, [sp,#0x40]
67 ] (cpu2) @c000cd10:TMB 00009011 STR  rl [sp,#0xd4d)]

71 ] (cpu2) @c000cd12:TMB fadfclac LOR 2 {pci+0xae ;
0xc000cdch

76 ] (cpu2) @c000cd16:TMB f8dcc000 LDR  r12,[r12.£0]
771 (cpu2) @c000cd1aTMB ee01cfl0 MCR  p15.:#0x0.r12.c1,c0.£0
83 ] (cpu2) @c000cd1e-TMB e92d500f PUSH  {r0-r3,r12.Ir}

86 ] (cpu2) @c000cd22: TMB f049fa09 BL  {pcl+0x49416
0xc0056138

86 ] (cpu2) @c000cd22:BR. c0056138
86 | (cpu2) —= trace_hardirgs_on

AT7: 35 cycles
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96 1 {cpul) —= vector_swi

96+] (cpul) @c000cce0:TMB 00006092 SUB  sp,sp#0x48

96+] (cpul) @c000cce2:TMB e88d1ff STM  sp,{r0-r12}

96+] (cpul) @c000cceb:TMB 00004668 MOV i sp

96+] (cpul) @c000cced:TMB f3eféall MRS r0.APSR ; formerly
CPSR

96+] (cpul) @c000ccec:TMB f08alalc EOR  r10,r10 #0xc

(cpul)
96+] (cpul) @c000ccf0:TMB 3828100 MSR  CPSRE_c.ri
96+] (cpul) @c000ccf4:TMB féc8d034 STR  sp.[r8,#0x34]
96+] (cpul) @c000ccfa:TMB facBel38 STR  Ir,[r8,#0x38]
896+] (cpul) @c000ccfc:TMB f08alalc EOR  r10.r10 #0xc
96+] (cpul) @c000cd00:TMBE f38a8100 MSR  CPSR_c,ri
96+] (cpul) @c000cd04:TMB f3f8800 MRS r8.SPSR

96+] (cpul) @c000cd08:TMB fBcdel3c STR Ir,[sp.#0x3c]
96+] (cpul) @c000cd0c:TMB f8cdB040 STR  rd,[sp.#0x40]
96+] (cpul} @c000cd10:-TMB 00009011 STR 0, [sp#0x44]

96+] (cpul) @c000cd12:-TMB fodfclac LDR 12 {pc}+lxae ;
0xc000cdcO

96+] (cput) @c000cd16-TMB 8dcc000 LDR  r12,[r12,20]
96+] (cpu1) @c000cd1aTMB ee01cH0 MCR  p15.#0x0.r12.c1.c0.#0
96+] (cput) @c000cd1e-TMB e92d500f PUSH  {r0-r3.r12,r}

96+] (cpul) @c000cd22:TMB f049fa09 BL  {pci+0x49416
0xc0056138

299 J(cpul) @c000cd22:BR c0056138
299 ] (cpul) = trace_hardirgs_on

A15: 203 cycles!
(PTM: waypoint timings only)



ETM for kernel tuning
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STM - software trace macrocell

Injects software-generated messages into the trace stream
Messages generated by writing to stimulus port area
Stimulus port area likely to be relatively fast

o faster than CoreSight device programming registers
Messages can be timestamped with CoreSight timestamp
Messages can be blocking or non-blocking

Message id and options determined by address

Stimulus port area can be mapped page by page

O pages can be mapped into userspace

Overall cost: generating and storing message data

o tens of cycles

No d-cache pollution!
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STM - software trace macrocell
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Where can trace be captured?

1}

ETB

(typically
8K - 32K)

main memory
(example 4MB)

off-chip trace capture unit (e.g. 4GB)

but... trace can be read out of in-memory buffers and saved on disk etc.
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Trace bit rate and buffer size

8Kb

ETB

10Kbit/s 1 Mbit/s 1 Gbit/s 10 Gbit/s

< STM —> ETM

\ software instrumentation instruction trace

Linaro CoreSight trace is becoming more practical and accessible!
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Coresight Support in the Linux Kernel

Linaro has been working on Coresight since March 2014
Started from the initial framework submitted by Pratik Patel
iIn December of 2012 [1]

The framework provides support for:

o source: ETM v3.3tov3.5and PTMv1.0, vl.1

o link: 8 port funnel and non-configurable replicator

o sink: ETBv1.0, TPIU and TMC (Trace Memory Ctrl)

Support for STM and CTI will be submitted when the base
framework Is accepted
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Coresight Framework Highlights

Provides an easy integration via DT for any platform with
generic components

Plenty of flexibility for addition of new, non-generic devices
Access to configuration registers via sysfs

Processor state (hibernation) decoupled from ETM/PTM
configuration

Multiple configuration of source and sink is supported
Provides interface for reporting the status of various
component and the gathering of metadata
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Where to Get the Code

e Official Coresight Branch on git.linaro.org:

o https://qgit.linaro.org/kernel/coresight.git
Always look at the master branch for the latest code
Code Is always based on the latest kernel release
Everything is under drivers/coresight
Menuconfig option is under

“Kernel Hacking/Coresight Tracing Support”

e Earlier submission and initial RFC are also present
e Google “Coresight framework and drivers” for discussions

Linaro
"


https://git.linaro.org/kernel/coresight.git

Documentation and Examples

Documentation lives under:
o Documentation/trace/coresight.txt
o Documentation/devicetree/bindings/arm/coresight.txt

Two sessions at Linaro Connect [2,3]

Example of a simple use case scenario and how to use the

framework is documented here [4]

o That example is for ARM’s TC2 board but has been
proven to work on Huawei’'s DO1 platform.

There Is also a more generic blog post here [5]
Linaro



What is Next

e Priority is on upstreaming of framework and support for base
components

e Concurrently:
o Support for Qualcomm’s APQ80x4 and TI's UEVM5432
o Support for STM32 on ARM’s V8 Juno platform

e On a longer term, drivers for
o Cross Trigger Interface (CTI)
o STM500
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Questions and Comments

[1].http://lists.infradead.org/pipermail/linux-arm-kernel/2012-December/138028.html
[2].http://lculd.zerista.com/event/member/137703

[3].http://lculd.zerista.com/event/member/137708
[4].https://wiki.linaro.org/WorklingGroups/Kernel/Coresight/traceDecodingWithDS5
[5].http://www.linaro.org/blog/core-dump/coresight-initial-steps-supporting-hw-assisted-tracing-linux-arm-
socs/
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