Porting LI'Tng to
Android for Kernel-
space and User-space
tracing

Charles Briere <c.briere@samsung.com>
Samsung Research America

&I RESEARCH AMERICA

Why ?

* Unified tracing within
* Kernel
* Native
* Java

* Consuming traces through network instead of storing locally
on device

What is different on Android

* Build system
* Android.mk

* Shared memory
* Android have ashmem (Anonymous SH MEMory)

* Pthread
* Included within Bionic (Android’s Libc)
* Not full implementation

Build system

Android.mk works within
* Android NDK (Native Development Kit)
* Android source tree

But setting up manually environment to build with autotools
* Can use Androgenizer to generate Android.mk afterward

NDK doesn’t expose as much as complete source tree
Building LLTng within AOSP

Missing pthread functions

* pthread_cancel
* Used to kill consumer thread if it failed to initialize
* Otherwise thread will be stopped with pipe
* Now using pthread_Kkill
* Bad idea ? Not too bad
No cleanup methods anyway
* pthread cond_timedwait
* Every pthread_condattr_setclock uses MONOTONIC
* Use pthread cond_timedwait_monotonic_np

Shared memory

* LTTng unlinks shm path

* Shares most memory regions by passing file descriptor
through UNIX socket

* Makes using Android’s ashmem instead of SYSV’s shm a simple
substitution

Shared memory : Futex

* Daemon notification
* Application can be started before daemon
* Unix socket or pipes
* Ashmem not suited as anonymous

* Sharing Futex through file instead of shared memory
shm_open = open

Missing definitions

* HOST_NAME_MAX <limits.h>
° 64
* NAME_MAX <limits.h>
« 255
* PATH_MAX <limits.h>
* 4096
* SPLICE_* <fcntl.h>
* Evenif __ NR_splice exists
* in_port_t <netinet/in.h>
* uintl6_t

&I RESEARCH AMERICA

Missing functions with equivalents

* posix_fadvise

* NR_arm_fadvise64 64()
* splice

* _ NR_splice()
* bswap {16,32,64}

* _ bswap {16,32,64}

Missing functions w/o equivalents

pthread_cancel

* pthread_kill (with SIGKILL)
* shm_open

* ashmem_create — ftruncate

pthread cond_timedwait
* pthread cond_timedwait_monotonic_np

getpwuid_r
* Set home to /sdcard

sigwaitinfo
* sigtimedwait (arbitrary 10000 seconds timeout)

&I RESEARCH AMERICA

Includes

* signal.h - sys/signal.h
* wait.h - sys/wait.h

What's next

* Make patches upstreamable and submit
* Add JAVA tracing capabilities
* Integrate in AOSP source tree

Questions ?

&I RESEARCH AMERICA

