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Typical multicore migration  

Let us assume that an application has already multiple threads… 

High effort 
Concurrency 

bugs 

• Data races 

• Deadlocks/livelocks 

• Nondeterminism 

• Memory model 

• … 

• Synchronization  & 

communication 

• Contention on shared 

resources 

• … 

• Explicit thread management 

and synchronization 

• Limited portability 

• … 

 

Poor 

performance 

Multicore migration is extremely challenging 
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Design process towards multicore software 

Tool support is essential for an 

effective and efficient parallelization 
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Multicore migration scenario 

Requirements for profiling & tracing systems 

• Focus on understanding the application and 

its parallel aspects 

• Threads & processes 

• Locks & messages 

• Portable to Windows, Linux 

• HW independent (x86, ARM, and ppc) 

• Heterogeneous system support  

(e.g., Intel Xeon Phi, CUDA) 

• Formats enabling interoperability and 

custom analysis types 

 

Multicore migration scenario 

• Legacy code is code where nobody 

understands the details  

• Runtime behavior is also complex and hard 

to follow 

• Manual extraction of information is 

cumbersome 

• Profiling and tracing tools are essential  

• To understand and debug 

• To engineer and optimize the runtime 
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Runtime recording with Score-P 

• Open source community 

• Linux (& Windows) 

• HW independent 

(x86, ARM, PPC, …) 

• Heterogeneous systems  

(e.g., Intel Xeon Phi, CUDA) 

• Open formats enabling 

interoperability and custom 

analysis types 

• Extremely scalable 

www.score-p.org 
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Score-P 1.3 

• Provides typical functionality for HPC performance tools 

• Support for process-level parallelism using MPI/SHMEM 

• Support for thread-level parallelism using OpenMP/Pthreads 

• Support for accelerator-level parallelism using CUDA 

• Based on instrumentation 

• Supports various techniques 

• Extensive runtime filtering & selective recording capabilities 

• Flexible measurement with single re-compilation 

• Basic and advanced profile generation 

• Event trace recording 

• Online access to profiling data 

• Scalability: Petascale 

• Portability: Supports all major HPC platforms, incl. 

IBM Blue Gene, Cray XT/XE/XK/XC, Fujitsu FX10 & K computer, 

SGI Altix, Power/AIX, Linux-based clusters (x86, ARM, Power) 

• Open source: 3-clause BSD license 

Key features 

JUQUEEN 

28 rack IBM Blue Gene/Q 

28,672 nodes (458,752 cores, 4-way SMT) 

448 TB RAM, 5.9 Petaflop/s peak 
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Score-P workflow 

Instr. 

target 

application  

Score-P 

measurement lib 

 
HWC 

OTF2 

event traces 
Scalasca 

Trace Analyzer 

CUBE4 

wait-state report 

CUBE4 

summary report 

Optimized measurement configuration 

Instrumenter 

compiler / 

linker 

Instrumented 

executable 

Source 

modules 

R
e

p
o

rt
  

m
a

n
ip

u
la

ti
o
n

 

Vampir Cube TAU ParaProf 
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Score-P instrumentation options 

• By using the compiler 

(GCC, Intel, PGI, IBM xl, Cray, Fujitsu) 

• By using source-to-source translation 

(Opari2, PDToolkit) 

• By linking against a pre-instrumented library 

(MPI, SHMEM) 

• By using GNU linker symbol renaming 

(POSIX threads, SHMEM) 

 

• Extensive API  (C/C++/Fortran), supporting 

• Program phases 

• Functions 

• Arbitrary code regions 

• Measurement control 

 

Automatic instrumentation Manual instrumentation 



Page 13 M. Geimer, C. Feld, and D. Becker 

Automatic binary instrumentation using Pin 

• Current prototype supports 

• Function wrapping 

• Incl. pre-runtime filtering (i.e., file level, region level, 

shared-object level) 

• Replacement of threading API routines 

(by calls to Score-P measurement system) 

• POSIX threads 

• Windows threads 

• Qt thread API 

• ACE threads 

 

• Pin: dynamic binary 

instrumentation tool from 

Intel 

• Flexible instrumentation at 

image-load time 

• No recompilation 

necessary 

• But only supports x86 

architectures 

 

Future work: Support for MTAPI (Multicore Association), Intel TBB 
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Cube profile viewer 

How is it 

distributed across 

the processes/threads? 

What kind of 

performance 

metric? 

Where is it in the 

source code? 

In which context? 
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Open Trace Format 2 (OTF2) 

• Successor to OTF (Vampir) and EPILOG 

(Scalasca) 

• Very flexible, scalable, and space-efficient 

multi-file format 

• Supports many event types 

• Enter/Exit regions/phases/… 

• Point-to-point, collective, one-sided 

communication, and synchronization 

• Fork/join and create/wait threading 

• HW + SW counters 

• Extensible event attributes 

• Well-defined read/write C API 

Key facts 
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Time-line visualization in Vampir (TU Dresden) 
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Automatic trace analysis with Scalasca 

• Idea 

• Automatic search for patterns of inefficient behavior 

• Classification of behavior & quantification of significance 

 

 

 

 

 

 

 

 

• Advantages 

• Guaranteed to cover the entire event trace 

• Quicker than manual/visual trace analysis 

• Parallel replay analysis exploits available memory & processors to deliver scalability 

 

Call 

path 

P
ro

p
e
rt

y
 

Location 

Low-level 

event trace 

High-level 

result 
Analysis  
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Example: Lock contention analysis 

 

 

 

 

 

 

• Frequent and severe problem during multicore migration  

• Automatic determination of waiting times in acquire lock operations 

• Easy identification of blocking threads in different call paths 
 

• Currently supports 

• OpenMP critical sections & lock API 

• Pthread mutex & condition variable APIs 

 

• Future work 

• Determine root-cause of waiting time 
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Summary 

• Parallelizing legacy software is tedious 

• Developers have to understand all parts of the software 

• Getting synchronization right and efficient is challenging 

 

• Profiling and tracing tools 

• Enable developers to understand, debug, engineer, and optimize 

their application 

• Have to be portable and extendable 

• Should allow to focus only on relevant parts of the application 

 

• Score-P fulfills these requirements and comes with an supportive tool 

stack enabling effective and efficient multicore migrations 
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More information and contacts 

 

Multicore Expert Center, Siemens AG 

• Dr. Daniel Becker 

• becker.daniel@siemens.com 

 

Score-P & OTF2 

• http://www.score-p.org 

• support@scorep.org 

 

Scalasca & Cube 

• http://www.scalasca.org 

• scalasca@fz-juelich.de 

 


