
Runtime analysis of parallel applications for 

industrial software development 

Markus Geimer and Christian Feld, Forschungszentrum Jülich GmbH 

Daniel Becker, Siemens AG 



Page 2 M. Geimer, C. Feld, and D. Becker 

Summary 

Supportive tool stack 

Runtime recording with Score-P 

Multicore tool support 

Application requirements 

Outline 



Page 3 M. Geimer, C. Feld, and D. Becker 

Power Generation 

Services 

Siemens AG  

1) Commonwealth of Independent States 

Managing Board 

Market 

Americas 
Global  

Healthcare 

Middle 

East, CIS1)   

Asia, 

Australia 

Europe, 

Africa 

Financial  

Services 
 

 

 

 

 

 

 

Power  

and Gas 

 

 

 

 

Wind  

Power and 

Renewables 

 

 

Mobility 
 

 

 

 

 

 

 

 

 

Energy 

Manage-

ment 
 

 

 

 

 

 

Building 

Techno-

logies 
 

 

 

 

 

 

Digital 

Factory 
 

 

 

 

 

 

 

Process 

Industries  

and Drives 
 

 

 

 

Healthcare  

 

 

 

 

 

 

 

 

Separately 
managed 

Corporate Core Corporate Services 

PG 

MO PS 

WP 

EM BT DF PD HC SFS 



Page 4 M. Geimer, C. Feld, and D. Becker 

Typical multicore migration  

Let us assume that an application has already multiple threads… 

High effort 
Concurrency 

bugs 

• Data races 

• Deadlocks/livelocks 

• Nondeterminism 

• Memory model 

• … 

• Synchronization  & 

communication 

• Contention on shared 

resources 

• … 

• Explicit thread management 

and synchronization 

• Limited portability 

• … 

 

Poor 

performance 

Multicore migration is extremely challenging 



Page 5 M. Geimer, C. Feld, and D. Becker 

Summary 

Supportive tool stack 

Runtime recording with Score-P 

Multicore tool support 

Application requirements 

Outline 



Page 6 M. Geimer, C. Feld, and D. Becker 

Design process towards multicore software 

Tool support is essential for an 

effective and efficient parallelization 



Page 7 M. Geimer, C. Feld, and D. Becker 

Multicore migration scenario 

Requirements for profiling & tracing systems 

• Focus on understanding the application and 

its parallel aspects 

• Threads & processes 

• Locks & messages 

• Portable to Windows, Linux 

• HW independent (x86, ARM, and ppc) 

• Heterogeneous system support  

(e.g., Intel Xeon Phi, CUDA) 

• Formats enabling interoperability and 

custom analysis types 

 

Multicore migration scenario 

• Legacy code is code where nobody 

understands the details  

• Runtime behavior is also complex and hard 

to follow 

• Manual extraction of information is 

cumbersome 

• Profiling and tracing tools are essential  

• To understand and debug 

• To engineer and optimize the runtime 



Page 8 M. Geimer, C. Feld, and D. Becker 

Summary 

Supportive tool stack 

Runtime recording with Score-P 

Multicore tool support 

Application requirements 

Outline 



Page 9 M. Geimer, C. Feld, and D. Becker 

Runtime recording with Score-P 

• Open source community 

• Linux (& Windows) 

• HW independent 

(x86, ARM, PPC, …) 

• Heterogeneous systems  

(e.g., Intel Xeon Phi, CUDA) 

• Open formats enabling 

interoperability and custom 

analysis types 

• Extremely scalable 

www.score-p.org 



Page 10 M. Geimer, C. Feld, and D. Becker 

Score-P 1.3 

• Provides typical functionality for HPC performance tools 

• Support for process-level parallelism using MPI/SHMEM 

• Support for thread-level parallelism using OpenMP/Pthreads 

• Support for accelerator-level parallelism using CUDA 

• Based on instrumentation 

• Supports various techniques 

• Extensive runtime filtering & selective recording capabilities 

• Flexible measurement with single re-compilation 

• Basic and advanced profile generation 

• Event trace recording 

• Online access to profiling data 

• Scalability: Petascale 

• Portability: Supports all major HPC platforms, incl. 

IBM Blue Gene, Cray XT/XE/XK/XC, Fujitsu FX10 & K computer, 

SGI Altix, Power/AIX, Linux-based clusters (x86, ARM, Power) 

• Open source: 3-clause BSD license 

Key features 

JUQUEEN 

28 rack IBM Blue Gene/Q 

28,672 nodes (458,752 cores, 4-way SMT) 

448 TB RAM, 5.9 Petaflop/s peak 



Page 11 M. Geimer, C. Feld, and D. Becker 

Score-P workflow 

Instr. 

target 

application  

Score-P 

measurement lib 

 
HWC 

OTF2 

event traces 
Scalasca 

Trace Analyzer 

CUBE4 

wait-state report 

CUBE4 

summary report 

Optimized measurement configuration 

Instrumenter 

compiler / 

linker 

Instrumented 

executable 

Source 

modules 

R
e

p
o

rt
  

m
a

n
ip

u
la

ti
o
n

 

Vampir Cube TAU ParaProf 



Page 12 M. Geimer, C. Feld, and D. Becker 

Score-P instrumentation options 

• By using the compiler 

(GCC, Intel, PGI, IBM xl, Cray, Fujitsu) 

• By using source-to-source translation 

(Opari2, PDToolkit) 

• By linking against a pre-instrumented library 

(MPI, SHMEM) 

• By using GNU linker symbol renaming 

(POSIX threads, SHMEM) 

 

• Extensive API  (C/C++/Fortran), supporting 

• Program phases 

• Functions 

• Arbitrary code regions 

• Measurement control 

 

Automatic instrumentation Manual instrumentation 



Page 13 M. Geimer, C. Feld, and D. Becker 

Automatic binary instrumentation using Pin 

• Current prototype supports 

• Function wrapping 

• Incl. pre-runtime filtering (i.e., file level, region level, 

shared-object level) 

• Replacement of threading API routines 

(by calls to Score-P measurement system) 

• POSIX threads 

• Windows threads 

• Qt thread API 

• ACE threads 

 

• Pin: dynamic binary 

instrumentation tool from 

Intel 

• Flexible instrumentation at 

image-load time 

• No recompilation 

necessary 

• But only supports x86 

architectures 

 

Future work: Support for MTAPI (Multicore Association), Intel TBB 



Page 14 M. Geimer, C. Feld, and D. Becker 

Summary 

Supportive tool stack 

Runtime recording with Score-P 

Multicore tool support 

Application requirements 

Outline 



Page 15 M. Geimer, C. Feld, and D. Becker 

Cube profile viewer 

How is it 

distributed across 

the processes/threads? 

What kind of 

performance 

metric? 

Where is it in the 

source code? 

In which context? 



Page 16 M. Geimer, C. Feld, and D. Becker 

Open Trace Format 2 (OTF2) 

• Successor to OTF (Vampir) and EPILOG 

(Scalasca) 

• Very flexible, scalable, and space-efficient 

multi-file format 

• Supports many event types 

• Enter/Exit regions/phases/… 

• Point-to-point, collective, one-sided 

communication, and synchronization 

• Fork/join and create/wait threading 

• HW + SW counters 

• Extensible event attributes 

• Well-defined read/write C API 

Key facts 



Page 17 M. Geimer, C. Feld, and D. Becker 

Time-line visualization in Vampir (TU Dresden) 



Page 18 M. Geimer, C. Feld, and D. Becker 

Automatic trace analysis with Scalasca 

• Idea 

• Automatic search for patterns of inefficient behavior 

• Classification of behavior & quantification of significance 

 

 

 

 

 

 

 

 

• Advantages 

• Guaranteed to cover the entire event trace 

• Quicker than manual/visual trace analysis 

• Parallel replay analysis exploits available memory & processors to deliver scalability 

 

Call 

path 

P
ro

p
e
rt

y
 

Location 

Low-level 

event trace 

High-level 

result 
Analysis  



Page 19 M. Geimer, C. Feld, and D. Becker 

Example: Lock contention analysis 

 

 

 

 

 

 

• Frequent and severe problem during multicore migration  

• Automatic determination of waiting times in acquire lock operations 

• Easy identification of blocking threads in different call paths 
 

• Currently supports 

• OpenMP critical sections & lock API 

• Pthread mutex & condition variable APIs 

 

• Future work 

• Determine root-cause of waiting time 



Page 20 M. Geimer, C. Feld, and D. Becker 

Summary 

Supportive tool stack 

Runtime recording with Score-P 

Multicore tool support 

Application requirements 

Outline 



Page 21 M. Geimer, C. Feld, and D. Becker 

Summary 

• Parallelizing legacy software is tedious 

• Developers have to understand all parts of the software 

• Getting synchronization right and efficient is challenging 

 

• Profiling and tracing tools 

• Enable developers to understand, debug, engineer, and optimize 

their application 

• Have to be portable and extendable 

• Should allow to focus only on relevant parts of the application 

 

• Score-P fulfills these requirements and comes with an supportive tool 

stack enabling effective and efficient multicore migrations 



Page 22 M. Geimer, C. Feld, and D. Becker 

More information and contacts 

 

Multicore Expert Center, Siemens AG 

• Dr. Daniel Becker 

• becker.daniel@siemens.com 

 

Score-P & OTF2 

• http://www.score-p.org 

• support@scorep.org 

 

Scalasca & Cube 

• http://www.scalasca.org 

• scalasca@fz-juelich.de 

 


