

Runtime analysis of parallel applications for industrial software development

Markus Geimer and Christian Feld, Forschungszentrum Jülich GmbH Daniel Becker, Siemens AG

Application requirements

Multicore tool support

Runtime recording with Score-P

Supportive tool stack

RSCHUNGSZENTRUM

Siemens AG

Typical multicore migration

Let us assume that an application has already multiple threads...

Concurrency bugs	Poor performance	High effort
 Data races Deadlocks/livelocks Nondeterminism Memory model 	 Synchronization & communication Contention on shared resources 	 Explicit thread management and synchronization Limited portability

Multicore migration is extremely challenging

Application requirements

Multicore tool support

Runtime recording with Score-P

Supportive tool stack

Design process towards multicore software

140 ! column is 141 !lcl_queens 142 queens (row) 143 if (row = K Related Cade Locati 140 ! column is 141 !lcl_queens	= col size) then on ngueens_threading.8502 ok, set the queen		0 × 1 × 0	Call Stack Presedy_sums_centro(JEENS_p_STO) Presdry_sums_centro(JEENS_p_STO) Presdry_sums_centro(JE
140 ! column is 141 !lol_queens	ok, set the queen	142 - Write	Ŷ	Call Stack
142 queens (20V) 143			^	treading_issues_exe!NQUEENS_p_SCTQL treading_issues_exe!L_NQUEENS_p_SC
144 if (row ==)	size) then		>	Code Locations / Timeline
ID Description +	Source	Function NADI	Module Evending	

Tool support is essential for an effective and efficient parallelization

Multicore migration scenario

Multicore migration scenario

- Legacy code is code where nobody understands the details
- Runtime behavior is also complex and hard to follow
- Manual extraction of information is cumbersome
- Profiling and tracing tools are essential
 - To understand and debug
 - To engineer and optimize the runtime

Requirements for profiling & tracing systems

- Focus on understanding the application and its parallel aspects
 - Threads & processes
 - Locks & messages
- Portable to Windows, Linux
- HW independent (x86, ARM, and ppc)
- Heterogeneous system support (e.g., Intel Xeon Phi, CUDA)
- Formats enabling interoperability and custom analysis types

Application requirements

Multicore tool support

Runtime recording with Score-P

Supportive tool stack

Runtime recording with Score-P

- Open source community
- Linux (& Windows)
- HW independent (x86, ARM, PPC, ...)
- Heterogeneous systems (e.g., Intel Xeon Phi, CUDA)
- Open formats enabling interoperability and custom analysis types
- Extremely scalable

Bundesministerium

für Bildung

und Forschung

ENERGY Office of Science

www.score-p.org

German Research School

UNIVERSITY OF OREGON

Score-P 1.3

Key features

- Provides typical functionality for HPC performance tools
 - Support for process-level parallelism using MPI/SHMEM
 - Support for thread-level parallelism using OpenMP/Pthreads
 - Support for accelerator-level parallelism using CUDA
- Based on instrumentation
 - Supports various techniques
 - Extensive runtime filtering & selective recording capabilities
- Flexible measurement with single re-compilation
 - Basic and advanced profile generation
 - Event trace recording
 - Online access to profiling data
- Scalability: Petascale
- Portability: Supports all major HPC platforms, incl.
 IBM Blue Gene, Cray XT/XE/XK/XC, Fujitsu FX10 & K computer, SGI Altix, Power/AIX, Linux-based clusters (x86, ARM, Power)
- Open source: 3-clause BSD license

JUQUEEN 28 rack IBM Blue Gene/Q 28,672 nodes (458,752 cores, 4-way SMT) 448 TB RAM, 5.9 Petaflop/s peak

Score-P workflow

Score-P instrumentation options

Manual instrumentation

- Extensive API (C/C++/Fortran), supporting
 - Program phases
 - Functions
 - Arbitrary code regions
 - Measurement control

Automatic instrumentation

- By using the compiler (GCC, Intel, PGI, IBM xl, Cray, Fujitsu)
- By using source-to-source translation (Opari2, PDToolkit)
- By linking against a pre-instrumented library (MPI, SHMEM)
- By using GNU linker symbol renaming (POSIX threads, SHMEM)

Automatic binary instrumentation using Pin

- Pin: dynamic binary instrumentation tool from Intel
- Flexible instrumentation at image-load time
 - No recompilation necessary
 - But only supports x86 architectures

- Current prototype supports
 - Function wrapping
 - Incl. pre-runtime filtering (i.e., file level, region level, shared-object level)
 - Replacement of threading API routines (by calls to Score-P measurement system)
 - POSIX threads
 - Windows threads
 - Qt thread API
 - ACE threads

Future work: Support for MTAPI (Multicore Association), Intel TBB

Application requirements

Multicore tool support

Runtime recording with Score-P

Supportive tool stack

SIEMENS

Cube profile viewer

Open Trace Format 2 (OTF2)

Key facts

- Successor to OTF (Vampir) and EPILOG (Scalasca)
- Very flexible, scalable, and space-efficient multi-file format
- Supports many event types
 - Enter/Exit regions/phases/...
 - Point-to-point, collective, one-sided communication, and synchronization
 - Fork/join and create/wait threading
 - HW + SW counters
 - Extensible event attributes
- Well-defined read/write C API

SIEMENS

Time-line visualization in Vampir (TU Dresden)

Automatic trace analysis with Scalasca

Idea

- Automatic search for patterns of inefficient behavior
- Classification of behavior & quantification of significance

Advantages

- Guaranteed to cover the entire event trace
- · Quicker than manual/visual trace analysis
- Parallel replay analysis exploits available memory & processors to deliver scalability

Example: Lock contention analysis

- Frequent and severe problem during multicore migration
- Automatic determination of waiting times in acquire lock operations
- Easy identification of blocking threads in different call paths
- Currently supports
 - OpenMP critical sections & lock API
 - Pthread mutex & condition variable APIs
- Future work
 - Determine root-cause of waiting time

Application requirements

Multicore tool support

Runtime recording with Score-P

Supportive tool stack

- Parallelizing legacy software is tedious
 - Developers have to understand all parts of the software
 - Getting synchronization right and efficient is challenging
- Profiling and tracing tools
 - Enable developers to understand, debug, engineer, and optimize their application
 - Have to be portable and extendable
 - Should allow to focus only on relevant parts of the application
- Score-P fulfills these requirements and comes with an supportive tool stack enabling effective and efficient multicore migrations

More information and contacts

Multicore Expert Center, Siemens AG

- Dr. Daniel Becker
- becker.daniel@siemens.com

Score-P & OTF2

- http://www.score-p.org
- support@scorep.org

Scalasca & Cube

- http://www.scalasca.org
- scalasca@fz-juelich.de

