
1

LTTng: from Low-Level Tracing to
High-Level Analyses

Tracing Summit – August 2015

mathieu.desnoyers@efcios.com 

2

Content

● LTTng
● Babeltrace
● Common Trace Format
● LTTng analyses
● Latency tracker
● Histogram generator
● TraceCompass

3

LTTng

● Performs user-space and kernel tracing,
● Kernel tracing performed by out-of-tree module

– No kernel patching required
– Supports kernel from 2.6.38 to 4.2+

● Enables seemless analysis of correlated kernel and
user-space data.

● Flexible and fast.

4

What's new in LTTng ?

● LTTng 2.6 (01/2015)
– Java Log4j support,

– Kernel tracer per system call tracing,

– Kernel tracer system call content (input/output)
fetching,

– Tracing NMI handlers (with Linux 3.17 or better).

– LTTng MI (Machine Interface),

5

What's new in LTTng ?

● LTTng 2.7 (currently in RC)
– Persistent memory UST ring buffer

● pramfs (out of tree), or
● DAX (Linux 4.0) and pmem driver (upcoming

Linux 4.1)
● Either BIOS does not reset memory on soft reboot,

or use kexec(8)
● Allows recovering user-space traced when system

crash with new lttng-crash tool.

6

What's new in LTTng ?

● LTTng 2.7 (currently in RC)
– LTTng filtering for kernel domain,

– Per-process user-space and kernel tracing,
● Select a set of PIDs

– Wildcards for kernel tracepoints,

– LTTng modules clock plugin support,

– LTTng UST clock and getcpu plugin support,

– LTTng Python logger support.

7

Babeltrace

● Babeltrace 1.x
– CTF reader

– Merge CTF traces by timestamp,

– Supports live LTTng tracing,

– C, C++, Python APIs.

● Babeltrace 2.0 (approx. 10/2015)
– Plugin system overhaul,

– Intermediate Representation,

– Event filtering.

8

Common Trace Format (CTF)

● Currently working on CTF 2.0
● Goal: transition from own metadata grammar

(TSDL) to JSON.
● Will be easier to extend, and easier to parse by

alternative CTF reader implementations.
● Specification of CTF 1.8 available at

http://diamon.org/ctf

http://diamon.org/ctf

9

LTTng Analyses

● Set of Python scripts providing summarized trace
information,

● Each analysis typically classified as:
– Top N

– Statistics table (avg., std. dev, min, max)

– Frequency histogram

● Available at https://github.com/lttng/lttng-analyses

https://github.com/lttng/lttng-analyses

10

Available Analyses

● CPU usage for the whole system

● CPU usage per-process

● Process CPU migration count

● Memory usage per-process (as seen by
the kernel)

● Memory usage system-wide (as seen by
the kernel)

● I/O usage (syscalls, disk, network)

● I/O operations log (with latency and
usage)

● I/O latency statistics (open, read, write,
sync operations)

● I/O latency frequency distribution

● Interrupt handler duration statistics
(count, min, max, average stdev)

● Interrupt handler duration top

● Interrupt handler duration log

● Interrupt handler duration frequency
distribution

● SoftIRQ handler latency statistics

● Syscalls usage statistics

11

LTTng Analyses (live demo)

12

Latency-tracker

● Kernel module to track down latency problems at
run-time

● Simple API that can be called from anywhere in the
kernel (tracepoints, kprobes, netfilter hooks,
hardcoded in other module or the kernel tree source
code)

● Keep track of entry/exit events and calls a callback
if the delay between the two events is higher than a
threshold

13

Usage

tracker = latency_tracker_create();

latency_tracker_event_in(tracker, key,
 threshold, timeout, callback);

....

latency_tracker_event_out(tracker, key);

If the delay between the event_in and event_out for the same key is higher
than “threshold”, the callback function is called.

The timeout parameter allows to launch the callback if the event_out takes
too long to arrive (off-CPU profiling).

14

Implemented use-cases

● Block layer latency

– Delay between block request issue and complete

● Wake-up latency

– Delay between sched_wakeup and sched_switch

● Network latency (prototype)

● IRQ handler latency (prototype)

● System call latency

– Delay between the entry and exit of a system call

● Offcpu latency

– How long a process has been scheduled out and why did it get
woken up

15

Example: system call latency

● Developed in collaboration with François Doray

on syscall_entry:

latency_tracker_event_in(current_pid);

on syscall_exit:

latency_tracker_event_out(current_pid);

on sched_switch:

event =
latency_tracker_get_event(next_pid);

if event && ((now – event->start) >
threshold):

dump_stack(next_pid);

16

System call latency example

81136.460929
schedule
schedule_timeout
wait_for_completion
sync_inodes_sb
sync_inodes_one_sb
iterate_supers
sys_sync
tracesys

81136.461482
_cond_resched
sync_inodes_sb
sync_inodes_one_sb
iterate_supers
sys_sync
tracesys

81136.467357
_cond_resched
mempool_alloc
__split_and_process_
bio
dm_request
generic_make_reques
t
submit_bio
submit_bio_wait
blkdev_issue_flush
ext4_sync_fs
sync_fs_one_sb

81136.470176
schedule
schedule_timeout
wait_for_completion
submit_bio_wait
blkdev_issue_flush
ext4_sync_fs
sync_fs_one_sb
iterate_supers
sys_sync
tracesys

syscall_latency_stack: comm=sync, pid=32224

Dynamically change the threshold:
echo 1000000 > /sys/module/latency_tracker_syscalls/parameters/usec_threshold

17

Off-cpu profiling

on sched_switch(prev, next):

 latency_tracker_event_in(prev, cb)

 latency_tracker_event_out(next)

cb():

 dump_stack(pid)

on sched_wakeup(pid):

 event = latency_tracker_get_event(pid)

 if event && ((now – event->start) > threshold):

 dump_stack(current)

18

Off-cpu profiling example

offcpu_sched_wakeup:
 waker_comm=swapper/3 (0),
 wakee_comm=qemu-system-x86 (7726),
 wakee_offcpu_delay=10000018451,
 waker_stack=
 ttwu_do_wakeup
ttwu_do_activate.constprop.74
 try_to_wake_up
 wake_up_process
 hrtimer_wakeup
 __run_hrtimer
 hrtimer_interrupt
 local_apic_timer_interrupt
 smp_apic_timer_interrupt
 apic_timer_interrupt

offcpu_sched_switch:
 comm=qemu-system-x86,
 pid=7726,
 delay=10000140896,
 stack=
 schedule
 futex_wait_queue_me
 futex_wait
 do_futex
 SyS_futex
 system_call_fastpath

19

Runtime latency distributions

● For system calls, file system, I/O scheduler and
block requests

● Show the distribution of requests latencies
● Clearly see in one screen the latencies of all disk I/O

at various level
● Available at

https://github.com/jdesfossez/latency_tracker
● Video demo (demo-latency_tracker.ogv)

https://github.com/jdesfossez/latency_tracker

20

Overhead on sysbench oltp (MySQL)

Test Average Overhead

Baseline 63.26s

LTTng sched 63.65s 0.61%

LTTng syscalls 64.95s 2.66%

Latency_tracker 65.36s 3.31%

Latencytop 66.24s 4.70%

LTTng all 70.24s 11%

21

TraceCompass

● Now available as a standalone application (requires
only a Java Virtual Machine)

● Available at http://tracecompass.org
● We are currently working at facilitating workflows

involving frequent back-and-forth between LTTng
analyses and TraceCompass,

● Can now read Perf traces converted to CTF.

http://tracecompass.org/

22

TraceCompass Screenshot

23

Questions ?

?  lttng.org

 lttng-dev@lists.lttng.org

 @lttng_project

 www.efficios.com

mailto:lttng-dev@lists.lttng.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

