clena

Experience. Outcomes.

Dynamic Userspace Tracing

Tracing Summit 2016
Embedded Linux Europe

Presenter Information
Francois Tétreault and Jason Puncher

Date
October 12, 2016

Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Userspace Tracing
Tracing Summit 2016

Agenda/Key Takeaways

Static Tracing Technique used on Linux with LTTng
1 » Based on the "-finstrument-functions” GNU compiler option and the "LD PRELOAD" environment variable

* Non architecture specific

Dynamic Tracing techniques used on Linux with LTTng

* A 1st approach based on ptrace, mmap, and dynamically modified code
2 » Architecture covered: PowerPC (Ciena’s implementation also supports x86 ***)

* A 2nd approach based on the DyninstAPI library
Architecture supported by Dyninst

Dynamic Tracing technique used on VxWorks
3 + Based on modified assembly code and processor interrupt exceptions
» Architecture covered: PowerPC (Ciena’s implementation also supports x86)

4 Dynamic Instrumentation using GDB with LTTng

5 Comparative Slide

(***) For details about the x86 implementation, you can refer to the previous previous version of this presentation

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

file:///C:/Users/ftetreau/Downloads/LTTng_TrcCode v 0.2 (3).pptx
file:///C:/Users/ftetreau/Downloads/LTTng_TrcCode v 0.2 (3).pptx
file:///C:/Users/ftetreau/Downloads/LTTng_TrcCode v 0.2 (3).pptx

Overview

Goal of the techniques discussed in this presentation
is to dynamically instrument the code

“Doing it live on a binary loaded into RAM”

Ultimately to trace all function calls

The stack can then be viewed in a flame graph
(see TraceCompass Flame Graph View)

Our debug targets:
Most are PowerPC-based
File system is either a small flash disk or a tiny ROM

RAM is limited
i.e. some targets only have 64 MB of RAM

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Flame Graph

http://archive.eclipse.org/tracecompass/doc/stable/org.eclipse.tracecompass.doc.user/LTTng-UST-Analyses.html#Flame_Graph_View
http://archive.eclipse.org/tracecompass/doc/stable/org.eclipse.tracecompass.doc.user/LTTng-UST-Analyses.html#Flame_Graph_View
http://archive.eclipse.org/tracecompass/doc/stable/org.eclipse.tracecompass.doc.user/LTTng-UST-Analyses.html#Flame_Graph_View

Overview

« Two general approaches are covered in this _ o _ _
Tracing by modifying function entry and exit

presentation
1. Modifying the entry and exit of functions .
Y ith | functi I Function A Tracing Entry
ay either rely on function calls, or — Func call or
* interrupt exceptions 4 Int Exception | trace
return
Tracing Exit
. Func call or
Exit Int Exception
trace
Return to caller return

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Overview

* Two general approaches are covered in this Tracing by modifying branch and return instructions
presentation Caller
1. Modifying the entry and exit of functions
 May either rely on function calls, or branch to A Elinéx‘éi!t?én | i
« interrupt exceptions < Function A ;racmg Pranches
2. Modifying branch instructions and return Entry < | :':t‘ﬁfn
instructions
« May either rely on function calls, or
* interrupt exceptions JEL Tracing Returns
« Particularly useful when the symbol (BT E‘i”é’x‘éi';t?én
information is not available trace
— Return to caller return

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Tracing Summit 2016

Static Tracing Technique used on
Linux with LTTng

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Static Tracing Technique used on Linux with LTTng

Function A

This technique is readily available
It inspired our dynamic techniques used on Linux with LTTng

call __cyg_profile_func_enter

The GNU compiler has a compile option "-finstrument-functions”
which generates instrumentation calls for the entry and exit
functions

On every entry into a function, and just before returning from a
function the following routines will be called:

void _ cyg profile func_enter (void *this fn, void *call_site);

void cyg_profile func _exit (void *this_ fn, void *call site);
— — call __cyg_profile_func_exit

ret

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Static Tracing Technique used on Linux with LTTng

Function A

Each routine will be provided with:

« this f£n - starting address of the function that is being
executed (the “callee”)

* call_site > address from which the function was called (the
“caller”)

call __cyg_profile_func_enter

call __cyg_profile_func_exit

ret

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Static Tracing Technique used on Linux with LTTng
-> Static Function Instrumentation Flow

Any shared library function can be replaced

using the LD_PRELOAD environment variable . LD_PRELOAD Library

call _ cyg_profile_func_enter EE—

Here we load the liblttng-ust-cyg-profile.so
shared library

« LD PRELOAD allows us to link this library
in place of the original function stubs

liblttng-ust-cyg-profile.so

et |__cyg_profile_func_enter:

return

»|_Cya_profile_func_exit:

return

call __cyg_profile_func_exit —

ret

[
cwna Copyright © Ciena Corporation 2016. All rights reserved. ’h

Static Tracing Technique used on Linux with LTTng

These functions would then log the function entry and exit in LTTng

Here's a sample trace:

[18:47:20.956030535]

3586, procname = "bbb Upgrade" }, ({

[18:47:20.956104596]

(+0.000074061)

3586, procname = "bbb Upgrade" }, ({

[18:47:20.956124114]

(+0.000019518)

3586, procname = "bbb Upgrade" }, ({

[18:47:20.956130907]

(+0.000006793)

3586, procname = "bbb Upgrade" }, ({

[
cwna Copyright © Ciena Corporation 2016. All rights reserved..

(none)
addr =

(none)
addr =

(none)
addr =

(none)
addr =

lttng ust cyg profile:func entry:
0x.., call site = 0Ox.. }

lttng ust cyg profile:func entry:
0x.., call site = 0x.. }

lttng ust cyg profile:func exit:
0x.., call site = 0x.. }

lttng ust cyg profile:func _entry:
O0x.., call site = Ox.. }

{ cpu_id

{ cpu_id

0

0

b,

b,

{ vtid

{ vtid

{ cpu id = 0 }, { vtid =

{ cou id =0 }, { vtid =

Static Tracing Technique used on Linux with LTTng

This is great! But it has its limitations:
* requires a recompile of the code to insert the calls to the generated entry/exit functions
* logging will be done on all threads within a process

» lacks ability to insert trigger points on which to commence tracing (tracing will start when "lttng start" is
called)

[
cwna Copyright © Ciena Corporation 2016. All rights reserved..

Tracing Summit 2016

Dynamic Tracing

on Linux \’/wLTTng,;f

[J
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux

The two approaches discussed in this section provide the ability to:

* dynamically instrument the code
Insert tracepoints to the entry and exit of each traced routines
No recompilation or use of any compile time flags required
 select individual threads on which to capture function entry/exit events
« trigger the start/stop of the trace collection when a particular events occur

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on LinuXx

Architecture covered: PowerPC
Ciena also supports x86 for both methods
(x86 is not explained in this presentation)
Both methods are implemented and used at Ciena
Allows tracing with LTTng in a embedded environment

Context:

« Executable binary file

* Process running the program

* Program loaded in RAM

« Tracing utility running from a bash shell process

 Goal is to trace a target process from the context of the
tracing utility

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Tracing Utility Process

Custom Utility for
Dynamic Tracing

Process

bash shell >

Process Under Tracing

Process
—t — —
0 0 0
D @ D
)))
o o o

Process binary file

L

Process Code in
text segment

Tracing Summit 2016

Dynamic Tracing technique used
on Linux with LTTng

15t approach based on ptrace, mmapgand <
dynamically modified code y

°
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux with ptrace
- Dynamic Function Instrumentation Flow

Function A = Function to trace

Tracing is done using liblttng-ust-cyg-profile.so:

+ cyg_profile_func_enter

+ cyg_profile_func_exit

An entry tracing function is needed to call

trace_ust_func_enter and pass:

* this_fn address is hard coded in prologue
(one prologue per traced function)

* call site - LR (Link Register)

The first instruction is modified to call the entry
tracing function

The Epilogue contains the return addr to A and the
overwritten instruction (1str instruction)

An exit tracing function is needed to call
trace_ust_func_exit and pass:

* this_fn - address is hard coded in prologue
¢ call site 2LR(Link Register)

The return instruction is modified to call the exit
tracing function

After which the flow is returned to the caller

Additional control is added to enable / disable
tracing on demand

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Function A

Entry Tracepoint

Prologue — Create Stack
Frame and Save Volatile
Registers

liblttng-ctl.so

First Instruction

“C” Entry Routine

if (enable tracing) -

if(tracing) ————|

Ittng_start_tracing
(conditional)

liblttng-ust-cyg-profile.so

|

N~

Epilogue — Restore Volatile
Registers and Pop Stack

cyg_profile_func_enter

Exit Tracepoint

liblttng-ust-cyg-profile.so

blr

Prologue — Setup exit
function parameters
r3 (ret value of A) r4 (A addr)

cyg_profile_func_exit

Return to the next
instruction following the
call to Function A

/\\

“C” Exit Routine
_/

if (tracing)

if (disable tracing) -

liblttng-ctl.so

\

Ittng_stop_tracing
(conditional)

Dynamic Tracing technique on Linux with ptrace
- Dynamic Function Instrumentation Flow

3 - Enabling Instrumentation 2 - Tracepoint code production 1 - Load Dynamic Libraries

Entry Tracepoint

liblttng-ctl.so

How is this autonomously setup? :
Prologue — Create Stack liblttng-ctl.so
Frame and Save Volatile]
1st stage - load the dynamic libraries Registers |, [ttng_start_tracing
< u / (conditional)
[
2nd stage = produce the tracepoint code Function A / “C” Entry Routine
First Instruction — _ -
3rd stage - enable the instrumentation Py ff‘enab_le tracing) 7 liblttng-ust-cyg-profile.so
if (tracing) ————
< > cyg_profile_func_enter
\ Epilogue — Restore Volatile
Registers and Pop Stack
[T
liblttng-ust-cyg-profile.so
Exit Tracepoint |, file f "
c rofile_func_exi
/> Prologue — Setup exit / yo-p B -
W function parameters
r3 (ret value of A) r4 (A addr)
blr — | < ,

“C” Exit Routine

Ittng_stop_tracing
(conditional)

if (tracing) —
Return to the next
instruction following the

call to Function A

\\\

if (disable tracing) -

&
<«

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux with ptrace
- Technology needed in stages 1to 3

Halt thread execution in order to modify its source
Make inter-process procedure calls in order to call :
dlopen : to load shared libraries
disym : to lookup symbol addresses (in shared libraries)
mmap : to allocate memory (in which to copy tracepoints)
etc...
Modify process memory in order to :
copy the tracepoint code into the processes memory map
modify the source in order to insert branches to the newly introduced tracepoints

This i1s accomplished using ptrace.

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux with ptrace
- ptrace (used in all 3 stages)

The ptrace() system call provides a means by which to observe and control the execution of another process.
With it you can change the image, and process registers.

#include <sys/ptrace.h>

long ptrace (enum ptrace request request, pid t pid, void *addr, void *data);

PEEKUSR, POKEUSR Read/Write process data.

PEEKDATA , POKEDATA Read/Write process memory.

ATTACH/DETACH Attach to process, making the calling process the trace parent. This call will send
a SIGSTOP to the process.

PTRACE_SINGLESTEP Continues process until exit from system call, or after execution of single
instruction.

PTRACE_CONT Restarts stopped child process

ptrace essentially allows to attach to a process and to peek and poke at memory

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux with ptrace
- Inter-process Procedure Call using ptrace (used in all 3 stages)

H 1 text

Process to trace is running Thread Stack

« Text Segment high addr instruction
PC > :

- Program counter il
Saved LR instruction
 Thread stack Back Chain =0 instruction
« Stack Pointer Sl

Saved LR

Back Chain

SP
stack grow
direction
low addr

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux with ptrace
- Inter-process Procedure Call using ptrace (used in all 3 stages)

Sequence of steps to suspend a thread and make an inter- text
process procedure call: Thread Stack
high addr instruction
PC > instruction
Saved LR instruction
Back Chain =0 instruction
instruction
L Saved LR
sp Back Chain

stack grow
direction

low addr

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux with ptrace
- Inter-process Procedure Call using ptrace (used in all 3 stages)

Sequence of steps to suspend a thread and make an inter- text
process procedure call: Thread Stack PC when
high addr i instruction
- Attach to thread (ptrace > ATTACH) J attaching : :
Fetch ot tent (ot to thread —> instruction
elc reg_ls erconten (p race) Saved LR instruction
« Save their values to heap for future use Back Chain = 0 S
Including PC of currently running thread instruction
Saved LR
Back Chain
SP

Saved Reg (heap)

GPRO - GPR31
CR
LR
stack grow PC
direction SP

low addr

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux with ptrace
- Inter-process Procedure Call using ptrace (used in all 3 stages)

Sequence of steps to suspend a thread and make an inter- text
process procedure call: Thread Stack PC when
high addr i instruction
- Attach to thread (ptrace > ATTACH) J attaching : :
Fetch ot tent (ot to thread —> instruction
elc reg_ls erconten (p race) Saved LR instruction
» Save their values to heap for future use Back Chain = 0 -
» Create a new temporary stack frame e
» Atrap instruction is inserted in place of the “Saved LR”
» Setup processor to call the inter-process procedure with: Saved LR
» GPR3 to GPRS are load with function parameters L Back Chain grtgééljjrl?rceess
« argument data is loaded into the temp stack frame SP PC
« PCis configured with address of function to call temp Argument Data
L tack
- thread execution is resumed (ptrace > PTRACE_CONT) f?ame TW (trap) blr
— Back Chain
Saved Reg (heap)
GPRO - GPR31
CR
LR
stack grow PC
direction SP
low addr

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux with ptrace
- Inter-process Procedure Call using ptrace (used in all 3 stages)

Sequence of steps to suspend a thread and make an inter-
process procedure call:

Attach to thread (ptrace > ATTACH)
Fetch register content (ptrace)
Save their values to heap for future use
Create a new temporary stack frame
» Atrap instruction is inserted in place of the “Saved LR”
Setup processor to call the inter-process procedure with:

Inter-process call is now running
* anew stack frame is created

Function return (stack frame is popped from the stack) ;te;’:ﬁ

Branch to LR (Link Register) - this jumps to a trap frame

instruction

Trap Handling invokes ptrace pro'ggs'
+ restores the CPU context with the previously saved registers procedure
» thread execution is then resumed from original PC location callf?;a:;:g

(ptrace > PTRACE_CONT)

Thread execution is now resumed to its original location prior
to inter-process procedure call

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

text
Thread Stack
) PC when : :
high addr attaching instruction
to thread instruction
Saved LR instruction
_ Thread _ _
Back Chain =0 resumes instruction
execution instruction
Saved LR
L] K Cha Inter-Process
- SP Back Chain Procedure
Argument Data
TW (trap) < Jump bir
- to atrap
| N Back Chain instruction
Saved Reg (heap)
Saved LR GPRO - GPR31
— Back Chain CR
- LR
stack grow PC
direction SP
low addr

Dynamic Tracing technique on Linux with ptrace
- Tracepoint Installation (2"9 stage)

Now that we have our tracepoints, it's time to copy them over to the process memory.
For this we need space and for that we look at the processes memory map:

bash-4.1# cat /proc/3550/maps

00100000-00102000 r-xp 00000000 00:00 O [vdso]
0£9c0000-0£fb34000 r-xp 00000000 08:01 428263 /1ib/libc-2.14.1.s0
0£fb34000-0£fb43000 ---p 00174000 08:01 428263 /1ib/libc-2.14.1.s0
0£b43000-0£fb45000 r--p 00173000 08:01 428263 /1ib/1libc-2.14.1.s0
0£fb45000-0£fb48000 rwxp 00175000 08:01 428263 /1ib/1libc-2.14.1.s0
0£b48000-0£fb4b000 rwxp 00000000 00:00 O

0£fb5b000-0£fb74000 r-xp 00000000 08:01 428349 /lib/libgcc_s.so.l
0££2e000-0££2£f000 r--p 0000a000 08:01 251006 /usr/lib/libmemTrace. so
0££2£000-0££30000 rwxp 0000b000 08:01 251006 /usr/lib/libmemTrace. so
0££30000-0£££0000 rwxp 00000000 00:00 O

*** unreseved memory ***

10000000-10342000 r-xp 00000000 08:01 10386 bin/bbb-xc
10351000-103a9000 rwxp 00341000 08:01 10386 bin/bbb-xc
103a9000-105ab000 rwxp 00000000 00:00 O [heap]

*** unreseved memory ***

48000000-4801£f000 r-xp 00000000 08:01 428346 /1ib/1d-2.14.1.so0

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux with ptrace
- Enabling Instrumentation (3"9 stage)

To this point we have not altered execution or impacted the performance of the target process.
Now we must insert the branch instructions at the start and end of every function to their matching tracepoint.
« Suspend all threads in process by attaching via ptrace.

How to get the list of threads for a specific process:

bash-4.1# 1s /proc/3550/task
3550 3765 3767 3769 3771 3774 3776 3778 3780 3782 4026 4028 4030
3567 3766 3768 3770 3772 3775 3777 3779 3781 3783 4027 4029 6910

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Tracing Summit 2016

on Linux with LTTng

2"d approach basedon the DynlnstAPI Ilbrary

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux with Dyninst

Dyninst APl is a dynamic instrumentation library
developed by the Paradyn project

« Executable binary file
* Process running the program

* Program loaded in RAM

« Tracing utility

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Process binary file

Process
— — —
>0 >0 >0
- - -
] D D
o)) o)
o o o

Process Code in
text segment

Custom Utility for
Dynamic Tracing

Based on
DyninstAPI

Dynamic Tracing technique on Linux with Dyninst

Sequence of steps to enable tracing using DyninstAPI

1. Load shared libraries Process Process binary file Custom Utility for
* liblttng-ust-cyg-profile.so Dynamic Tracing
« cyg_profile_func_enter =2 = SYN
- cyg_profile_func_exit al1&] |& _L Pigifzse;rg:ﬁtm DyninstAP!I
* liblttng-ctl.so
« lttng_start_tracing
« Ittng_stop_tracing
« our_utility shared _lib.so
» Entry function to invoke cyg_profile_func_enter
« Exit function to invoke cyg_profile_func_exit
« Additional control is added to enable / disable tracing
on demand our_utility_shared_lib.so
func_enter () liblttng-ctl.so

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

if (enable tracing)
lttng_start_ tracing
if (tracing)
cyg_profile func_enter

Ittng_start_tracing
A Ittng_stop_tracing

func_exit()
if (tracing)
cyg_profile func exit
if (tracing)
lttng_stop_tracing

liblttng-ust-cyg-profile.so

N

cyg_profile_func_enter

cyg_profile_func_exit

http://www.paradyn.org/html/manuals.html

Dynamic Tracing technique on Linux with Dyninst
Attach

Sequence of steps to enable tracing using DyninstAPI ot

e

1. Load shared libraries = , _ —
Process Process binary file [Custom Utility for
2. Attach to the process Dynamic Tracing
. . . ags . = = = -
3. Find functions in our_utility_shared_lib.so ANEIRE _L I Based on
. : : . : Dy StAP
4. Find functions in Process binary file a2 |= A yninst
« Generated debug data - dwarf file
5. Begin insertion set Function A’ - instrumented Debug Data
6. Create Dyninst insertion points and insert entry/exit Entry snippet _,Function A v L Dwarf file
shippets Entry Entry generated from the
- this fnand call_site are needed for each function process binary file
7. Finalize insertion set Exit | Exit
Function A is replaced by Function A Exit snippet
8. Detach - process resumes execution our_utility_shared_lib.so
st (s () liblttng-ctl.so

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

if (enable tracing)
lttng_start_tracing
if (tracing)
cyg_profile func_enter

> Ittng_start_tracing

A Ittng_stop_tracing

func_exit()
if (tracing)
cyg_profile func exit
if (tracing)
lttng_stop_tracing

liblttng-ust-cyg-profile.so

N

cyg_profile_func_enter
cyg_profile_func_exit

http://www.paradyn.org/html/manuals.html

Tracing Summit 2016

Dynamic Tracing technique used
on VxWorks

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique used on VxWorks

Instrumentation is inserted by latching on function calls (as
opposed to function entry and exit)

Function calls on 32-bit PowerPC

* Relative Calls:
LI: signed 24-bit value concatenated w/ 0b00
[Effectively £ 25 bits (£ 32 MB)]
* bl - Branch update LR (Link Register)
* Relative to address of bl instruction
* bla - Branch update LR (Link Register)
* Relative to address 0x0000_0000

* Long Calls:

* blrl - Branchto LR and update LR

The 32-bit LR contains the address of the callee and then LR is
updated with the address of the instruction which follow the b1rl

Return from function calls
* blr - Branch to LR (Link Register)
The 32-bit LR contains the return address

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Func B Func A

Func C

text
bl (to B)
blr
blrl(to A)
blr
blrl(to A)
bla (to C)
blr

Dynamic Tracing technique used on VxWorks
We now enable tracing

Our goal is to seamlessly trace all bl, bla, blrl, text heap

and blr b (to A)
<. (b (to B) £
Techniqgue used for bl and bla instructions S lbla(to SB[B]) b (to Q) g
Our technique involves a Spring Board (SB), exception L MARKED | w
handling and tracing code blr INVALID 8
The Spring Board S
» Used for replacing relative branches (b1, bla) m
« Each callee needs its own entry in the SB O |7
« An entry simple branch to the callee (without affecting the LR) L:CE plrl(to A) exception table
 When tracing is disabled:
We branch to the SB then branch to the callee blr ISI Exception

* When tracing is enabled: > Our Tracing

The spring board is marked as invalid [through changing Block LL)> blrl (to A) coee
Addrgss T.ranslatlon (BAT) registers] | | € bla(to SB[C])
Now jumping to the SB causes an ISI Exception. The tracing >
. : LL
code is in the exception table
blr

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique used on VxWorks

Technique used for blrl and blr instructions

The “spring board” approach has limitations for long branch
instructions
* Aone-to-one SB entry would be required for each b1lrl and
blr instructions

There is no practical way to know the value of LR in advance of
code execution

Only one LR and we need to keep track of return address and
address of callee

Space to allocate the SB is small
Our alternative is to replace all blrl and blr by an invalid
instruction to generate an Program Exception

The drawback is that Program Exceptions are generated
whether tracing is enabled or not

« But the exception handler is really simple (only a few
instructions)

Enabling vs disabling of tracing is handled by the tracing code

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Func B Func A

Func C

text

heap

(to A)
(to B)

bla(to SB[B])

(to C)

bad instruction

bad instructi :

e e et exception table

blr ISI Exception
Our Tracing
Code

bad instruction

bla(to SB[C])
Program
Exception

bad instruction Our Tracing
Code

pJeog buuds

Tracing Summit 2016

Dynamic Instrumentation

GDB with LTTng

[
cwna Copyright © Ciena Corporation 2016. All rights reserved. 35

Dynamic Instrumentation using GDB with LTTng

For completeness we are mentioning this capability in our presentation
A quick google search yields the following results:
» https://suchakra.wordpress.com/2016/06/29/fast-tracing-with-gdb/
 http://www.slideshare.net/marckhouzam/gcc-summit2010-tmf
« http://qgit.Ittng.org/?p=lttv.git;a=blob_plain;f=doc/developer/ust.html
Our next step would involve getting familiar with this new capability

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

https://suchakra.wordpress.com/2016/06/29/fast-tracing-with-gdb/
https://suchakra.wordpress.com/2016/06/29/fast-tracing-with-gdb/
https://suchakra.wordpress.com/2016/06/29/fast-tracing-with-gdb/
https://suchakra.wordpress.com/2016/06/29/fast-tracing-with-gdb/
https://suchakra.wordpress.com/2016/06/29/fast-tracing-with-gdb/
https://suchakra.wordpress.com/2016/06/29/fast-tracing-with-gdb/
https://suchakra.wordpress.com/2016/06/29/fast-tracing-with-gdb/
https://suchakra.wordpress.com/2016/06/29/fast-tracing-with-gdb/
http://www.slideshare.net/marckhouzam/gcc-summit2010-tmf
http://www.slideshare.net/marckhouzam/gcc-summit2010-tmf
http://www.slideshare.net/marckhouzam/gcc-summit2010-tmf
http://www.slideshare.net/marckhouzam/gcc-summit2010-tmf
http://www.slideshare.net/marckhouzam/gcc-summit2010-tmf
http://www.slideshare.net/marckhouzam/gcc-summit2010-tmf
http://git.lttng.org/?p=lttv.git;a=blob_plain;f=doc/developer/ust.html
http://git.lttng.org/?p=lttv.git;a=blob_plain;f=doc/developer/ust.html

Tracing Summit 2016 s r— > *'J’m\ b E

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Comparative Slides - Static Tracing Technique used on Linux with LTTng

PROS CONS
* Readily available and Open Source Requires recompilation
 Portable to all architectures * Must traces all threads within a process
« -finstrument-functions option is available « Tracing is always on
since at least GCC 3.0.4 doesn’t provide controls to trigger start/stop
« LD_PRELOAD is a well-established Id-linux of tracing

environment variable

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Comparative Slides - Dynamic Tracing technique on Linux with ptrace

PROS CONS

« Designed for low memory consumption and * Not easily portable to other architectures and
performance is considered challenging to implement

* Provides control to trace specific threads and » Lots of caveats

to trigger start/stop of tracing

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Comparative Slides - Dynamic Tracing technique on Linux with Dyninst

PROS

Dyninst is Open Source

Dyninst is well documented and manuals are
easily accessible from http://www.paradyn.org

Our Dyninst program is simple and short: one
file with about 200 lines of code

Performance is taken into consideration

Provides control to trace specific threads and
to trigger start/stop of tracing

Portable to every architecture supported by
Dyninst
Actively maintained

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

CONS

* Dyninst libraries are large (~100MB / disk
space)

« Consumes a lot of memory

Based on our experiment, instrumenting a 50 MB
binary translated to 1.3 GB being used by our
utility after calling the findFunction API

http://www.paradyn.org/
http://www.paradyn.org/

Comparative Slides - Dynamic Tracing technique used on VxWorks

PROS CONS
« Designed for low memory consumption and « Approach very targeted to VxWorks - not
performance proven in Linux land

* Not easily portable to other architectures and
challenging to implement

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

O
Thank You cwna

Experience. Outcomes.

Copyright © Ciena Corporation 2016. All rights reserved.

Tracing Summit 2016

Backup slides

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Dynamic Tracing technique on Linux with ptrace
- Inter-process Procedure Call using ptrace (used in all 3 stages) x86

On the x86 target the EIP

is stored on the stack by

the processor during the
function call.

This step is replaced by
awrite the LR on
PowerPC cards.

o
cwna Copyright © Ciena Corporal

Return Address

Args

Argd

Arg3

Arg2

Argl

Arg0

Saved FP

Saved PC

Buffer

TRAP INSTRUCTION

Large Function Arguments

Buffer

Threads existing Stack

ion 2016. All rights reserved.

D

4+——

Function Arguments

Data pointed to by function
arguments

After suspending a thread, we:

Push argument data on the stack
Push a trap instruction

Then create a stack frame as would the
compiler:

 push PC
 push FP
* push arguments

Push the EIP normally done by the processor
on processing the call instruction.

» Address pushed is that of trap instruction.

Dynamic Tracing technique on Linux with ptrace
- Autonomously Produced Tracepoint (2" stage) PowerPC ==

liblttng-ctl.so

Ittng_start_tracing
(conditional)

libIttng-ust-cyg-prefile.se

trace_ust func_enter

Epilogue - Restore Volatile

Entry Tracepoint Function Exit Tracepoint Function Fleitrs and Pop Shck
EntryTrcFuncPrologue: EntryTrcFuncEpilogue: m ExitTrcFuncEpilogue:] ExttTraceport /ﬂwﬁirﬂjfm
stwu srl, -80(3%rl) | lwz Sr14, 76(3rl) 1is $r5, a.h = T === R
stw %r0, 8(%rl) .. ori %r5, %r5, a.l e B N B
mflr 310 lwz $r0, 24(%rl) lis $r6, x.h rstuon o g e iediaatle cxactes) gl
stw $r0, 12 (%rl) mtctr %r0 ori $r6, %r6, x.1 ;)
mfcr $r0 1wz %r0, 20 (%rl) lis $r0, z.h
stw $r0, 16(%rl) mtxer %r0 oril $r0, %r0, z.1 a 9 address of function being traced
mfxer $r0 1wz %r0, 16(%rl) mtctr $r0
stw 510, 20(%rl) | mtcr 510 betr x = address of Global LTTng Trace Data
stw %r0, 24 (%rl) 1wz %r0, 12 (%rl) . -
ctw sr2, 28(5rl) | mtlr 510 L y = address of Entry Tracepoint “C” routine
stw sr3, 32(krl) ¢ 1wz 5:0, 8(%rl) z - address of Exit Tracepoint “C” routine
.. addi %rl, %rl, 80
stw srl4, 76(srl)
bl 4
nflr 210 Instruction previously r3,r4,r5,r6
S S replaced by branch to . .
stw 510, 4(%rl) wrapoer T Global Trace Data -> (registers used for parameter passing)
1 - . (about the LTTng trace)
is $r3, a.
ori %r3, %r3, a.l Branch back to next y ——p . T .
lis %r4, x.h instruction in function Entry Tracep°|nt C rOUtlne parameters
ori srd, srd4, x.l Entry Tracepoint “C” Routine e 313 r4 > x
lis %r5, vy.h
ori 5r5, %r5, y.1l blr Exit Tracepoint “C” routine paramaters
mtlr %r5 .
blrl (%) 7 —» * r3/r4 - traced function return value
' « r5>a r6 > x

L Exit Tracepoint “C” Routine

(*) next instruction is beginning of EntryTrcFuncEpilogue blr

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

Entry Tracepoint

Prologue — Create Stack
Frame and Save Volatile
Registers

Dynamic Tracing technique on Linux with ptrace

liblttng-ctl.so

Ittng_start_tracing

- Autonomously Produced Tracepoint (2"d stage) X86 | omm | s
===])

—> trace_ust func_enter

Function Entry Wrapper Trap Handler

liblttng-ust<yg-profile.so

- —
- ~ Trap Handler Global Data e | e e o
Cali pJIfclcgue In Global Trace Data — | [Ml
prologusIn: 2=
push EEbP - moy <Trap Data Addr> “C" Exit Routine ml:lb";:g_::i:
mow esp, Sebp i i (conditiona
push Boax push tebp e et sesoems | -
nusn ECK . busladity tesp, ek call to Function A
gush 2edx Entry Tracepoint "C” push %EEE 4 \ /
pushf Raoutine
mowl 16 (sekbp), %eax
push =Gkl Data Addr> - push Tomx
mowl 12 (sebp), %Seax
push <Functicn Addr> push Teanw
mow 1l 8 (sebp), %Seax
call <Entry Addr> oW <Gkl Data Addr> — push Teax
add $8, %esp push tebp call funcFourfArgs
popf oW Tesp, Eebp
jala)=] Tedx push Soax add $16, %esp
PeE Tecx PoE Tebp
jalaj=) Teax mowl 16 (Eekp), %eax ret
PopP tebp push Seax
add 54, %esp mowl 12 (3ebp), %eax funcFourArgs:
push Teax
Code replaced by mowvl 8 (%ebp), %eax The “C" partion of the signal handler.
Jump te Wrapper push eax Moves EIP into ECX and the address
_ of "minimalCallArgs” into EIP of saved
Branch back to call funcFourargs context.
next ins?ructicn 2dd 516, Zesp
in function. pop Lebp minimalCallhArgs:
L ret
L push tebp
funcFourfirgs: mons tesp, %ebp
push Bexc
push Tedx
.) . push Seax
Exit Tracepoint "C™ Routine
call minimalCall
Exit Tracepoint "C" Routine
j=l=y=l Teax
j=l=3s] Tedx
j=l=3s] Tecx
Poe sebp
ret
minimalCall:
e S =Exit aAddr=>

[
cwna Copyright © Ciena Corporation 2016. All rights reserved.

