
Real-Time Response Time
Measurement by Integration of Trace

Buffering and Aggregation Tools

Tracing Summit 2016

mathieu.desnoyers@efcios.com

Presenter

● Mathieu Desnoyers
– CEO at EfficiOS

– LTTng, Linux, Userspace RCU, Babeltrace maintainer.

3

Content

● Trace buffering vs in-place aggregation
● Automate problem analysis by combining aggregation and post-

processing tools
● Periodic use-case demo

– Jack audio server

● Aperiodic use-cases demos
– Memcached

● Benchmarks
● Future Work

4

Trace Buffering vs In-Place Aggregation

● Trace buffering:
– Store events into a buffer,

– Analysis performed at post-processing,

– Multiple analyses can be performed on the same recorded trace,

– E.g. Ftrace, Perf, LTTng.

● In-place aggregation:
– Run-time analysis directly using event input,

– Aggregation performed in the traced execution context,

– E.g. eBPF, DTrace, SystemTAP.

5

Trace Buffering vs In-Place Aggregation

● Often presented as competing tracing solutions,
● In reality, can be combined to create powerful analysis tools.

6

Combining Trace Buffering with Aggregation

LTTng flight recorder
tracing Linux kernel and user-space

(always on)Latency tracker
Tracking long response time

Trigger script

Wake-up triggered by
detected long response
time

Gather snapshot of
detailed activity
during the long
response-time.

LTTng Analyses
Summarize trace, statistical

breakdown, identify outliers.

Trace Compass
Graphical trace

analyses

Babeltrace
View trace as text log

7

Latency Tracker

● Kernel module to track down latency problems at run-time,
● Simple API that can be called from anywhere in the kernel

(tracepoints, kprobes, netfilter hooks, hardcoded in other module or
the kernel tree source code),

● Keep track of entry/exit events and calls a callback if the delay
between the two events is higher than a threshold.

8

Latency Tracker Usage

tracker = latency_tracker_create(threshold, timeout, callback);

latency_tracker_event_in(tracker, key);

....

latency_tracker_event_out(tracker, key);

If the delay between the event_in and event_out for the same key is higher than “threshold”, the callback
function is called.

The timeout parameter allows to launch the callback if the event_out takes too long to arrive (off-CPU
profiling).

9

Latency Tracker: Low-Impact, Low-Overhead

● Memory allocation:
– Custom memory allocator implemented with lock-free per-CPU RCU

free-lists and pre-allocated NUMA pools,

– Out-of-context worker thread can expand the memory pools as needed
up to a user-configurable limit,

– Prior to 3.17, custom call_rcu thread to avoid wake-up deadlock.
Starting from 3.17, use call_rcu_sched().

● State tracking:
– Userspace-rcu hashtable ported to the Linux kernel:

● Lock-free insertion and removal, wait-free lookups

10

Implemented Latency Trackers

● Block layer: from block request issue to completion,

● Network: from socket buffer receive to consumption by user-space,

● Wake-up: from each thread wake-up to next scheduling of that thread,

● Off-cpu: from each thread preemption/blocking to next execution of that thread,

● IRQ handler: from irq handler entry to exit,

● System call: from system call entry to exit,

● Time-to-first-byte: from accept system call return to write system call family entry on the
same inode.

11

Response Time: Interrupt to Thread Execution

Linux Mainline Hardware Interrupt
Processing Critical Path

12

Interrupt to Thread Execution (Preempt-RT)

Linux Preempt-RT Hardware Interrupt
Processing Critical Path

13

Latency Tracker: Online Critical Path Analysis

● Measure response time,
● Execution contexts and wakeup chains tracking in kernel module

– For both mainline kernel and preempt-rt,

– IRQ, SoftIRQ, wakeup/scheduling chains, NMI (eventually).

● Follow critical path from interrupt servicing to completion of task,
● Can perform user-defined action when latencies are higher than a

specified threshold,

14

Online Critical Path Analysis Configuration

● Passing parameters to latency tracker kernel module
– Latency threshold,

– Chain filters:
● User-space task, pid, process name, RT task, Interrupt source (timer or

IRQ/SoftIRQ number),

– Chain stops when target task starts to run,

– Chain stops when target task blocks,

● Track work begin/end with identifiers from instrumented user-space
– Complex asynchronous use-cases.

15

LTTng Kernel and User-Space Tracers

● Low-overhead, correlated kernel and user-space tracing,
– Ring buffers in shared memory.

● User-defined filtering on event arguments,
● System-wide or tracking of specific processes,
● Optionally gather performance counters and extra fields as contexts.
● Support disk I/O output, in-memory flight recorder, network

streaming, live reading.

16

LTTng Kernel Tracer (LTTng-modules)

● Load kernel tracer modules (no kernel patching required!), or build
into the Linux kernel image,

● LTTng kernel tracer hooks on:
– Tracepoints,

– System call entry/exit with detailed argument content,

– Kprobes,

– Kretprobes.

17

LTTng User-Space Tracer (LTTng-UST)

● Dynamically loaded shared library,
● Fast user-space tracing, fast-path entirely in user-space,
● Instruments:

– Application and libraries with lttng-ust tracepoints, tracef, tracelog,

– Java JUL and Log4j loggers, Python logger,

– Malloc, pthread mutex with symbol override,

– Function entry/exit by compiling with -finstrument-functions.

● Dumps base address information required to map process addresses to
executable and library functions/source code using ELF and DWARF.

18

LTTng Analyses

● Offline analysis based on LTTng traces,
● Analyze CPU, memory, I/O, interrupts, scheduling, system calls,
● Distribution, top, log over threshold:

– I/O latency,

– IRQ handler duration, SoftIRQ raise latency, handler duration,

– Thread wakeup latency (sched_waking to sched_switch in),

– User-defined periods based on kernel and user-space events.

● Integrated with Trace Compass graphical user interface.

19

LTTng Monitoring

http://grafana.ini-tech.com:3002/dashboard/db/response-time
Login: demo Password: demo123

http://grafana.ini-tech.com:3002/dashboard/db/response-time

20

Trace Compass

● Graphical user interface,
● Useful for correlating trace analysis results with detailed graphical

representation,
● Implements its own analyses,
● Implements LAMI JSON interface to interact with external analysis

scripts.

21

22
(ns)

23

Scheduling Latencies

24

Babeltrace

● Common Trace Format (CTF) trace reader/converter,
● Performs time-based trace correlation/merge,
● Expose APIs (C, C++, Python) for reading CTF traces,
● Pretty-print traces into text log.

25

Periodic Use-Case Demo

● Jack
– Infrastructure for communication between audio applications and with

audio hardware

– http://www.jackaudio.org

– Scheduling latency caused by unsuitable priorities.

http://www.jackaudio.org/

26

Aperiodic Use-Cases Demos

● Memcached
– Distributed in-memory object caching system

– http://memcached.org

– Response-time to start handling client query
● Interrupt servicing latency caused by long driver interrupt handler

– Response-time to complete client query handling
● I/O latency caused by logging

http://memcached.org/

27

Benchmarks

● Latency tracker online critical path
– Memcached, through gigabit interface,

– 10k requests,

– Baseline: 491 ms

– With tracker: 520 ms

– Overhead: 5.9 %

28

Latency Tracker Critical Path Bechmarks

29

Latency Tracker Critical Path Benchmarks

30

Future Work

● Expose API to lock-free memory allocator, hash table, and latency
tracker for use in eBPF scripts. Would provide:

– NMI-safe lock-free memory allocator vs per-freelist spin lock with
interrupts off,

– NMI-safe lock-free hash table vs per-bucket locking with interrupts
off,

– Would allow hooking eBPF scripts to perf NMIs triggered on
performance counter overflows.

● Re-implement latency tracker online critical path module state-
machine as eBPF high-level code (bcc).

31

Links

LTTng:
http://lttng.org

Latency tracker:
https://github.com/efficios/latency-tracker

LTTng analyses scripts:
https://github.com/lttng/lttng-analyses

TraceCompass:
http://tracecompass.org/

Babeltrace
http://diamon.org/babeltrace

Common Trace Format
http://diamon.org/ctf

http://lttng.org/
https://github.com/efficios/latency-tracker
https://github.com/lttng/lttng-analyses
http://tracecompass.org/
http://diamon.org/babeltrace
http://diamon.org/ctf

32

Questions ?

? lttng.org

 lttng-dev@lists.lttng.org

 @lttng_project

 www.efficios.com

mailto:lttng-dev@lists.lttng.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

