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Content

● Trace buffering vs in-place aggregation
● Automate problem analysis by combining aggregation and post-

processing tools
● Periodic use-case demo

– Jack audio server

● Aperiodic use-cases demos
– Memcached

● Benchmarks
● Future Work
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Trace Buffering vs In-Place Aggregation

● Trace buffering:
– Store events into a buffer,

– Analysis performed at post-processing,

– Multiple analyses can be performed on the same recorded trace,

– E.g. Ftrace, Perf, LTTng.

● In-place aggregation:
– Run-time analysis directly using event input,

– Aggregation performed in the traced execution context,

– E.g. eBPF, DTrace, SystemTAP.
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Trace Buffering vs In-Place Aggregation

● Often presented as competing tracing solutions,
● In reality, can be combined to create powerful analysis tools.
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Combining Trace Buffering with Aggregation

LTTng flight recorder
tracing Linux kernel and user-space

(always on)Latency tracker
Tracking long response time

Trigger script

Wake-up triggered by
detected long response
time

Gather snapshot of
detailed activity
during the long
response-time.

LTTng Analyses
Summarize trace, statistical

breakdown, identify outliers.

Trace Compass
Graphical trace

analyses

Babeltrace
View trace as text log



7

Latency Tracker

● Kernel module to track down latency problems at run-time,
● Simple API that can be called from anywhere in the kernel 

(tracepoints, kprobes, netfilter hooks, hardcoded in other module or 
the kernel tree source code),

● Keep track of entry/exit events and calls a callback if the delay 
between the two events is higher than a threshold.
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Latency Tracker Usage

tracker = latency_tracker_create(threshold, timeout, callback);

latency_tracker_event_in(tracker, key);

....

latency_tracker_event_out(tracker, key);

If the delay between the event_in and event_out for the same key is higher than “threshold”, the callback 
function is called.

The timeout parameter allows to launch the callback if the event_out takes too long to arrive (off-CPU 
profiling).
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Latency Tracker: Low-Impact, Low-Overhead

● Memory allocation:
– Custom memory allocator implemented with lock-free per-CPU RCU 

free-lists and pre-allocated NUMA pools,

– Out-of-context worker thread can expand the memory pools as needed 
up to a user-configurable limit,

– Prior to 3.17, custom call_rcu thread to avoid wake-up deadlock. 
Starting from 3.17, use call_rcu_sched().

● State tracking:
– Userspace-rcu hashtable ported to the Linux kernel:

● Lock-free insertion and removal, wait-free lookups 
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Implemented Latency Trackers

● Block layer: from block request issue to completion,

● Network: from socket buffer receive to consumption by user-space,

● Wake-up: from each thread wake-up to next scheduling of that thread,

● Off-cpu: from each thread preemption/blocking to next execution of that thread,

● IRQ handler: from irq handler entry to exit,

● System call: from system call entry to exit,

● Time-to-first-byte: from accept system call return to write system call family entry on the 
same inode.
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Response Time: Interrupt to Thread Execution

Linux Mainline Hardware Interrupt
Processing Critical Path
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Interrupt to Thread Execution (Preempt-RT)

Linux Preempt-RT Hardware Interrupt
Processing Critical Path



13

Latency Tracker: Online Critical Path Analysis

● Measure response time,
● Execution contexts and wakeup chains tracking in kernel module

– For both mainline kernel and preempt-rt,

– IRQ, SoftIRQ, wakeup/scheduling chains, NMI (eventually).

● Follow critical path from interrupt servicing to completion of task,
● Can perform user-defined action when latencies are higher than a 

specified threshold,
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Online Critical Path Analysis Configuration

● Passing parameters to latency tracker kernel module
– Latency threshold,

– Chain filters:
● User-space task, pid, process name, RT task, Interrupt source (timer or 

IRQ/SoftIRQ number),

– Chain stops when target task starts to run,

– Chain stops when target task blocks,

● Track work begin/end with identifiers from instrumented user-space
– Complex asynchronous use-cases.
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LTTng Kernel and User-Space Tracers

● Low-overhead, correlated kernel and user-space tracing,
– Ring buffers in shared memory.

● User-defined filtering on event arguments,
● System-wide or tracking of specific processes,
● Optionally gather performance counters and extra fields as contexts.
● Support disk I/O output, in-memory flight recorder, network 

streaming, live reading.
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LTTng Kernel Tracer (LTTng-modules)

● Load kernel tracer modules (no kernel patching required!), or build 
into the Linux kernel image,

● LTTng kernel tracer hooks on:
– Tracepoints,

– System call entry/exit with detailed argument content,

– Kprobes,

– Kretprobes.
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LTTng User-Space Tracer (LTTng-UST)

● Dynamically loaded shared library,
● Fast user-space tracing, fast-path entirely in user-space,
● Instruments:

– Application and libraries with lttng-ust tracepoints, tracef, tracelog,

– Java JUL and Log4j loggers, Python logger,

– Malloc, pthread mutex with symbol override,

– Function entry/exit by compiling with -finstrument-functions.

● Dumps base address information required to map process addresses to 
executable and library functions/source code using ELF and DWARF.
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LTTng Analyses

● Offline analysis based on LTTng traces,
● Analyze CPU, memory, I/O, interrupts, scheduling, system calls,
● Distribution, top, log over threshold:

– I/O latency,

– IRQ handler duration, SoftIRQ raise latency, handler duration,

– Thread wakeup latency (sched_waking to sched_switch in),

– User-defined periods based on kernel and user-space events.

● Integrated with Trace Compass graphical user interface.
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LTTng Monitoring

http://grafana.ini-tech.com:3002/dashboard/db/response-time
Login: demo Password: demo123

http://grafana.ini-tech.com:3002/dashboard/db/response-time
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Trace Compass

● Graphical user interface,
● Useful for correlating trace analysis results with detailed graphical 

representation,
● Implements its own analyses,
● Implements LAMI JSON interface to interact with external analysis 

scripts.
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Scheduling Latencies
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Babeltrace

● Common Trace Format (CTF) trace reader/converter,
● Performs time-based trace correlation/merge,
● Expose APIs (C, C++, Python) for reading CTF traces,
● Pretty-print traces into text log.
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Periodic Use-Case Demo

● Jack
– Infrastructure for communication between audio applications and with 

audio hardware

– http://www.jackaudio.org

– Scheduling latency caused by unsuitable priorities.

http://www.jackaudio.org/
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Aperiodic Use-Cases Demos

● Memcached
– Distributed in-memory object caching system

– http://memcached.org

– Response-time to start handling client query
● Interrupt servicing latency caused by long driver interrupt handler

– Response-time to complete client query handling
● I/O latency caused by logging

http://memcached.org/
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Benchmarks

● Latency tracker online critical path
– Memcached, through gigabit interface,

– 10k requests,

– Baseline: 491 ms

– With tracker: 520 ms

– Overhead:  5.9 %
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Latency Tracker Critical Path Bechmarks



29

Latency Tracker Critical Path Benchmarks
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Future Work

● Expose API to lock-free memory allocator, hash table, and latency 
tracker for use in eBPF scripts. Would provide:

– NMI-safe lock-free memory allocator vs per-freelist spin lock with 
interrupts off,

– NMI-safe lock-free hash table vs per-bucket locking with interrupts 
off,

– Would allow hooking eBPF scripts to perf NMIs triggered on 
performance counter overflows.

● Re-implement latency tracker online critical path module state-
machine as eBPF high-level code (bcc).
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Links

LTTng:
http://lttng.org

Latency tracker:
https://github.com/efficios/latency-tracker

LTTng analyses scripts:
https://github.com/lttng/lttng-analyses

TraceCompass:
http://tracecompass.org/

Babeltrace
http://diamon.org/babeltrace

Common Trace Format
http://diamon.org/ctf

http://lttng.org/
https://github.com/efficios/latency-tracker
https://github.com/lttng/lttng-analyses
http://tracecompass.org/
http://diamon.org/babeltrace
http://diamon.org/ctf
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Questions ?

?    lttng.org

  lttng-dev@lists.lttng.org

  @lttng_project

  www.efficios.com

mailto:lttng-dev@lists.lttng.org
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