
© 2016 IBM Corporation

Tracing and Linux-Kernel RCU

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

Tracing Summit, October 12, 2016



© 2016 IBM Corporation2

Tracing and Linux-Kernel RCU, June 3, 2016

Overview

Two Definitions and a Consequence

Avoiding Bugs

Triggering Bugs Quickly

Locating Bugs Once Triggered (Tracing Is Here)

Recent Improvements In Use of Tracing

Possible Future Improvements (Not Just Tracing)

Summary



© 2016 IBM Corporation3

Tracing and Linux-Kernel RCU, June 3, 2016

Two Definitions and a Consequence



© 2016 IBM Corporation4

Tracing and Linux-Kernel RCU, June 3, 2016

Two Definitions and a Consequence

A non-trivial software system contains at least one bug

A reliable software system contains no known bugs



© 2016 IBM Corporation5

Tracing and Linux-Kernel RCU, June 3, 2016

Two Definitions and a Consequence

A non-trivial software system contains at least one bug

A reliable software system contains no known bugs

Therefore, any non-trivial reliable software system contains at 
least one bug that you don't know about



© 2016 IBM Corporation6

Tracing and Linux-Kernel RCU, June 3, 2016

Two Definitions and a Consequence

A non-trivial software system contains at least one bug

A reliable software system contains no known bugs

Therefore, any non-trivial reliable software system contains at 
least one bug that you don't know about

 It is necessary to find that bug!



© 2016 IBM Corporation7

Tracing and Linux-Kernel RCU, June 3, 2016

Avoiding Bugs



© 2016 IBM Corporation8

Tracing and Linux-Kernel RCU, June 3, 2016

Avoiding Bugs: Design Time

To the extent possible, establish requirements
–Hint: It never is completely possible!

Understand the hardware and underlying software
–Shameless plug: “Is Parallel Programming Hard, And, If So, What Can 

You Do About It?”
• https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html 

Set down design (text, figures, discussion, whatever)

 In some cases, formal verification in design, for example:
– http://lwn.net/Articles/243851/, https://lwn.net/Articles/470681/, 

https://lwn.net/Articles/608550/ 
–But need for formal verification often means too-complex design!



© 2016 IBM Corporation9

Tracing and Linux-Kernel RCU, June 3, 2016

Avoiding Bugs: Coding Time



© 2016 IBM Corporation10

Tracing and Linux-Kernel RCU, June 3, 2016

Avoiding Bugs: Coding Time

Review your code carefully (can't always count on others!)
–Write the code long hand in pen on paper
–Correct bugs as you go
–Copy onto a clean sheet of paper
–Repeat until the last two versions are identical

What constitutes “not complex”?
–Sequential code, and
–You can test it line-by-line, as in a scripting language or via gdb



© 2016 IBM Corporation11

Tracing and Linux-Kernel RCU, June 3, 2016

Avoiding Coding Bugs: Case Study



© 2016 IBM Corporation12

Tracing and Linux-Kernel RCU, June 3, 2016



© 2016 IBM Corporation13

Tracing and Linux-Kernel RCU, June 3, 2016



© 2016 IBM Corporation14

Tracing and Linux-Kernel RCU, June 3, 2016

So, How Well Did I Do?



© 2016 IBM Corporation15

Tracing and Linux-Kernel RCU, June 3, 2016

    1 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,1 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
    2               struct rcu_node *rnp,2               struct rcu_node *rnp,
    3               struct rcu_data *rdp)3               struct rcu_data *rdp)
    4 {4 {
    5   int i;5   int i;
    6   struct list_head *lp;6   struct list_head *lp;
    7   struct list_head *lp_root;7   struct list_head *lp_root;
    8   struct rcu_node *rnp_root = rcu_get_root(rsp);8   struct rcu_node *rnp_root = rcu_get_root(rsp);
    9   struct task_struct *tp;9   struct task_struct *tp;
  10 10 
  11   if (rnp == rnp_root) {11   if (rnp == rnp_root) {
  12     WARN_ONCE(1, "Last CPU thought to be offlined?");12     WARN_ONCE(1, "Last CPU thought to be offlined?");
  13     return;13     return;
  14   }14   }
  15   WARN_ON_ONCE(rnp != rdp->mynode &&15   WARN_ON_ONCE(rnp != rdp->mynode &&
  16          (!list_empty(&rnp->blocked_tasks[0]) ||16          (!list_empty(&rnp->blocked_tasks[0]) ||
  17           !list_empty(&rnp->blocked_tasks[1])));17           !list_empty(&rnp->blocked_tasks[1])));
  18   for (i = 0; i < 2; i++) {18   for (i = 0; i < 2; i++) {
  19     lp = &rnp->blocked_tasks[i];19     lp = &rnp->blocked_tasks[i];
  20     lp_root = &rnp_root->blocked_tasks[i];20     lp_root = &rnp_root->blocked_tasks[i];
  21     while (!list_empty(lp)) {21     while (!list_empty(lp)) {
  22       tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);22       tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
  23       spin_lock(&rnp_root->lock); /* irqs already disabled */23       spin_lock(&rnp_root->lock); /* irqs already disabled */
  24       list_del(&tp->rcu_node_entry);24       list_del(&tp->rcu_node_entry);
  25       tp->rcu_blocked_node = rnp_root;25       tp->rcu_blocked_node = rnp_root;
  26       list_add(&tp->rcu_node_entry, lp_root);26       list_add(&tp->rcu_node_entry, lp_root);
  27       spin_unlock(&rnp_root->lock); /* irqs remain disabled */27       spin_unlock(&rnp_root->lock); /* irqs remain disabled */
  28     }28     }
  29   }29   }
  30 }30 }



© 2016 IBM Corporation16

Tracing and Linux-Kernel RCU, June 3, 2016

    1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
    2                                      struct rcu_node *rnp,2                                      struct rcu_node *rnp,
    3                                      struct rcu_data *rdp)3                                      struct rcu_data *rdp)
    4 {4 {
    5   int i;5   int i;
    6   struct list_head *lp;6   struct list_head *lp;
    7   struct list_head *lp_root;7   struct list_head *lp_root;
    8   int retval;8   int retval;
    9   struct rcu_node *rnp_root = rcu_get_root(rsp);9   struct rcu_node *rnp_root = rcu_get_root(rsp);
  10   struct task_struct *tp;10   struct task_struct *tp;
  11 11 
  12   if (rnp == rnp_root) {12   if (rnp == rnp_root) {
  13     WARN_ONCE(1, "Last CPU thought to be offlined?");13     WARN_ONCE(1, "Last CPU thought to be offlined?");
  14     return 0;  /* Shouldn't happen: at least one CPU online. */14     return 0;  /* Shouldn't happen: at least one CPU online. */
  15   }15   }
  16   WARN_ON_ONCE(rnp != rdp->mynode &&16   WARN_ON_ONCE(rnp != rdp->mynode &&
  17          (!list_empty(&rnp->blocked_tasks[0]) ||17          (!list_empty(&rnp->blocked_tasks[0]) ||
  18           !list_empty(&rnp->blocked_tasks[1])));18           !list_empty(&rnp->blocked_tasks[1])));
  19   retval = rcu_preempted_readers(rnp);19   retval = rcu_preempted_readers(rnp);
  20   for (i = 0; i < 2; i++) {20   for (i = 0; i < 2; i++) {
  21     lp = &rnp->blocked_tasks[i];21     lp = &rnp->blocked_tasks[i];
  22     lp_root = &rnp_root->blocked_tasks[i];22     lp_root = &rnp_root->blocked_tasks[i];
  23     while (!list_empty(lp)) {23     while (!list_empty(lp)) {
  24       tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);24       tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
  25       spin_lock(&rnp_root->lock); /* irqs already disabled */25       spin_lock(&rnp_root->lock); /* irqs already disabled */
  26       list_del(&tp->rcu_node_entry);26       list_del(&tp->rcu_node_entry);
  27       tp->rcu_blocked_node = rnp_root;27       tp->rcu_blocked_node = rnp_root;
  28       list_add(&tp->rcu_node_entry, lp_root);28       list_add(&tp->rcu_node_entry, lp_root);
  29       spin_unlock(&rnp_root->lock); /* irqs remain disabled */29       spin_unlock(&rnp_root->lock); /* irqs remain disabled */
  30     }30     }
  31   }31   }
  32   return retval;32   return retval;
  33 }33 }



© 2016 IBM Corporation17

Tracing and Linux-Kernel RCU, June 3, 2016

    1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
    2                                      struct rcu_node *rnp,2                                      struct rcu_node *rnp,
    3                                      struct rcu_data *rdp)3                                      struct rcu_data *rdp)
    4 {4 {
    5   int i;5   int i;
    6   struct list_head *lp;6   struct list_head *lp;
    7   struct list_head *lp_root;7   struct list_head *lp_root;
    8   int retval;8   int retval;
    9   struct rcu_node *rnp_root = rcu_get_root(rsp);9   struct rcu_node *rnp_root = rcu_get_root(rsp);
  10   struct task_struct *tp;10   struct task_struct *tp;
  11 11 
  12   if (rnp == rnp_root) {12   if (rnp == rnp_root) {
  13     WARN_ONCE(1, "Last CPU thought to be offlined?");13     WARN_ONCE(1, "Last CPU thought to be offlined?");
  14     return 0;  /* Shouldn't happen: at least one CPU online. */14     return 0;  /* Shouldn't happen: at least one CPU online. */
  15   }15   }
  16   WARN_ON_ONCE(rnp != rdp->mynode &&16   WARN_ON_ONCE(rnp != rdp->mynode &&
  17          (!list_empty(&rnp->blocked_tasks[0]) ||17          (!list_empty(&rnp->blocked_tasks[0]) ||
  18           !list_empty(&rnp->blocked_tasks[1])));18           !list_empty(&rnp->blocked_tasks[1])));
  19   retval = rcu_preempted_readers(rnp);19   retval = rcu_preempted_readers(rnp);
  20   for (i = 0; i < 2; i++) {20   for (i = 0; i < 2; i++) {
  21     lp = &rnp->blocked_tasks[i];21     lp = &rnp->blocked_tasks[i];
  22     lp_root = &rnp_root->blocked_tasks[i];22     lp_root = &rnp_root->blocked_tasks[i];
  23     while (!list_empty(lp)) {23     while (!list_empty(lp)) {
  24       tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);24       tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
  25       spin_lock(&rnp_root->lock); /* irqs already disabled */25       spin_lock(&rnp_root->lock); /* irqs already disabled */
  26       list_del(&tp->rcu_node_entry);26       list_del(&tp->rcu_node_entry);
  27       tp->rcu_blocked_node = rnp_root;27       tp->rcu_blocked_node = rnp_root;
  28       list_add(&tp->rcu_node_entry, lp_root);28       list_add(&tp->rcu_node_entry, lp_root);
  29       spin_unlock(&rnp_root->lock); /* irqs remain disabled */29       spin_unlock(&rnp_root->lock); /* irqs remain disabled */
  30     }30     }
  31   }31   }
  32   return retval;32   return retval;
  33 }33 }



© 2016 IBM Corporation18

Tracing and Linux-Kernel RCU, June 3, 2016

Avoiding Coding Bugs: Case Study Evaluation

The approach worked just fine for the actual coding

However, I should have put more effort into arriving at a 
simpler design

Of course, at some point you do have to start coding

And there is a cost to refusing to move these lists:  The 
grace-period detection code must look at rcu_node structures 
whose CPUs are all offline

–This is the right tradeoff now, but might not have been back in 2009



© 2016 IBM Corporation19

Tracing and Linux-Kernel RCU, June 3, 2016

Avoiding Coding Bugs When Under Pressure

When you are fixing a critical bug, speed counts

The difference is level of risk
 The code is already broken, so less benefit to using extremely dainty 

process steps
 But only if you follow up with careful process
 Which I repeatedly learn the hard way:

http://paulmck.livejournal.com/14639.html 
 Failure to invest a few days in early 2009 cost me more than a 

month in late 2009!!!

Long-term perspective required
 And that means you – leave the “blame it on management” game to 

Dilbert cartoons
 Align with whatever management initiatives present themselves



© 2016 IBM Corporation20

Tracing and Linux-Kernel RCU, June 3, 2016

But I Did All This And There Are Still Bugs!!!

 “Be Careful!!! It Is A Real World Out There!!!”

The purpose of careful software-development practices is to 
reduce risk

And another part of risk reduction is testing!



© 2016 IBM Corporation21

Tracing and Linux-Kernel RCU, June 3, 2016

Triggering Bugs Quickly



© 2016 IBM Corporation22

Tracing and Linux-Kernel RCU, June 3, 2016

Current RCU Regression Testing

Stress-test suite: “rcutorture”
–http://lwn.net/Articles/154107/, http://lwn.net/Articles/622404/

 “Intelligent fuzz testing”: “trinity”
–http://codemonkey.org.uk/projects/trinity/

Test suite including static analysis: “0-day test robot”
–https://lwn.net/Articles/514278/

 Integration testing: “linux-next tree”
–https://lwn.net/Articles/571980/ 

Test the test: Mutation testing
–https://www.cs.cmu.edu/~agroce/ase15.pdf 

Some reports of automated formal verification of RCU
–For but one example, https://arxiv.org/abs/1610.03052 

But let's look at some example bugs...



© 2016 IBM Corporation23

Tracing and Linux-Kernel RCU, June 3, 2016

Example 1: RCU-Scheduler Mutual Dependency

RCU Scheduler

Synchronization

Schedule Threads
Priority Boosting

Interrupt Handling



© 2016 IBM Corporation24

Tracing and Linux-Kernel RCU, June 3, 2016

So, What Was The Problem?

Found during testing of Linux kernel v3.0-rc7:
–RCU read-side critical section is preempted for an extended period
–RCU priority boosting is brought to bear
–RCU read-side critical section ends, notes need for special processing
–Interrupt invokes handler, then starts softirq processing
–Scheduler invoked to wake ksoftirqd kernel thread:

• Acquires runqueue lock and enters RCU read-side critical section
• Leaves RCU read-side critical section, notes need for special processing
• Because in_irq() returns false, special processing attempts deboosting
• Which causes the scheduler to acquire the runqueue lock
• Which results in self-deadlock

–(See http://lwn.net/Articles/453002/ for more details.)

Fix: Add separate “exiting read-side critical section” state
–Also validated my creation of correct patches – without testing!

Note: Remains a bug even under SC



© 2016 IBM Corporation25

Tracing and Linux-Kernel RCU, June 3, 2016

Example 1: Bug Was Located By Normal Testing



© 2016 IBM Corporation26

Tracing and Linux-Kernel RCU, June 3, 2016

Example 2: Grace Period Cleanup/Initialization Bug

1. CPU 0 completes grace period, starts new one, cleaning up and initializing up through first 
leaf rcu_node structure

2. CPU 1 passes through quiescent state (new grace period!)

3. CPU 1 does rcu_read_lock() and acquires reference to A

4. CPU 16 exits dyntick-idle mode (back on old grace period)

5. CPU 16 removes A, passes it to call_rcu()

6. CPU 16 associates callback with next grace period

7. CPU 0 completes cleanup/initialization of rcu_node structures

8. CPU 16 callback associated with now-current grace period

9. All remaining CPUs pass through quiescent states

10. Last CPU performs cleanup on all rcu_node structures

11. CPU 16 notices end of grace period, advances callback to “done” state

12. CPU 16 invokes callback, freeing A (too bad CPU 1 is still using it)

Not found via Linux-kernel validation: In production for 5 years! 



© 2016 IBM Corporation27

Tracing and Linux-Kernel RCU, June 3, 2016

Example 2: Grace Period Cleanup/Initialization Bug

CPU 0

CPU 1

CPU 15

CPU 16

CPU 17

CPU 31

QS

QS

QS

Idle

Idle

Idle

Idle Remove A QS

Read A

QS

Free A

Still
Using A!!!Grace 

Period 0
Grace 

Period 1
Grace 

Period 2

Grace 
Period 0

Grace 
Period 1

Grace 
Period 2

Note: Remains a bug even under SC



© 2016 IBM Corporation28

Tracing and Linux-Kernel RCU, June 3, 2016

Example 2: Grace Period Cleanup/Initialization Fix

CPU 0

CPU 1

CPU 15

CPU 16

CPU 17

CPU 31

QS

QS

QS

Idle

Idle

Idle

Idle Remove A QS

Read A

QS

Grace 
Period 0

Grace Period
intermission

Grace 
Period 1

Grace 
Period 0

Grace 
Period 1

Grace Period
intermission

Cannot yet free A

All agree that grace period 1 starts after grace period 0 ends



© 2016 IBM Corporation29

Tracing and Linux-Kernel RCU, June 3, 2016

Example 1 & Example 2 Results

Example 1: Bug was located by normal Linux test procedures

Example 2: Bug was missed by normal Linux test procedures
–Not found via Linux-kernel validation: In production for 5 years!
–On systems with up to 4096 CPUs...
–But as far as we know, this bug never did trigger in the field

Both are bugs even under sequential consistency
–Continued improvement in RCU's regression testing is clearly needed



© 2016 IBM Corporation30

Tracing and Linux-Kernel RCU, June 3, 2016

Why Is Improvement Needed?

A billion+ embedded Linux devices (1.4B smartphones)
–A bug that occurs once per million years manifests three times per day
–But assume a 1% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 device-years of RCU per year: p(RCU) = 10-5



© 2016 IBM Corporation31

Tracing and Linux-Kernel RCU, June 3, 2016

Why Is Improvement Needed?

A billion+ embedded Linux devices (1.4B smartphones)
–A bug that occurs once per million years manifests three times per day
–But assume a 1% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 device-years of RCU per year: p(RCU) = 10-5

At least 80 million Linux servers
–A bug that occurs once per million years manifests twice per month
–Assume 50% duty cycle, 10% in the kernel, and 1% of that in RCU
–40,000 system-years of RCU per year: p(RCU) = 5(10-4)

https://www.quora.com/How-many-servers-exist-in-the-world



© 2016 IBM Corporation32

Tracing and Linux-Kernel RCU, June 3, 2016

Why Is Improvement Needed?

A billion+ embedded Linux devices (1.4B smartphones)
–A bug that occurs once per million years manifests three times per day
–But assume a 1% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 device-years of RCU per year: p(RCU) = 10-5

At least 80 million Linux servers
–A bug that occurs once per million years manifests twice per month
–Assume 50% duty cycle, 10% in the kernel, and 1% of that in RCU
–40,000 system-years of RCU per year: p(RCU) = 5(10-4)

Races between RCU event pairs, p(bug)=p(RCU)2:
–N-CPU probability of race: 1-(1-p(bug))N-Np(1-p(bug))(N-1)

–Assume rcutorture p(RCU)=1, compute rcutorture speedup:
• Embedded: 1012: 7.9 days of rcutorture testing covers one year
• Server: 4(106): 21.9 years of rcutorture testing covers one year
• Linux kernel releases are only about 60 days apart: RCU is moving target

https://www.quora.com/How-many-servers-exist-in-the-world



© 2016 IBM Corporation33

Tracing and Linux-Kernel RCU, June 3, 2016

So Why Do RCU Failures Appear to be Rare?

What is rcutorture's strategy for 80M server systems?
–Other failures mask those of RCU, including hardware failures

• I know of no human artifact with a million-year MTBF
• But the Linux kernel is being used in applications that put the public at risk

–Increasing CPUs on test system increases race probability
• And many systems have relatively few CPUs

–Rare but critical operations are forced to happen more frequently
• Long-running RCU readers, CPU hotplug, expedited grace periods, RCU 

barrier operations, mass registration of RCU callbacks, irqs, mass return 
from idle, concurrent grace-period start, preemption, RCU priority boosting, 
quiescent-state forcing, conditional grace periods, sysidle, Tasks RCU, …

• 16 test scenarios emphasizing different aspects of RCU
–Knowledge of possible race conditions allows targeted tests

• Plus other dirty tricks learned in 25 years of testing concurrent software
• Provide harsh environment to force software to evolve quickly



© 2016 IBM Corporation34

Tracing and Linux-Kernel RCU, June 3, 2016

Locating Bugs Once Triggered (Tracing Is Here)



© 2016 IBM Corporation35

Tracing and Linux-Kernel RCU, June 3, 2016

Locating Bugs Once Triggered (Tracing Is Here)

 “What did I just change?” and review that code

Break large commits into smaller commits
–Difficulty of analyzing code grows exponentially (or worse) with size

Look at conditions in which failure occurs, rule out bystanders

Debug printk()s and WARN_ON()s
–Especially if only executed after error is detected

Pull code into userspace and use nicer debug tools

Tracing

Formal verification (more on this later if we have time)



© 2016 IBM Corporation36

Tracing and Linux-Kernel RCU, June 3, 2016

The Common-Case RCU Bug is a Heisenbug!



© 2016 IBM Corporation37

Tracing and Linux-Kernel RCU, June 3, 2016

The Common-Case RCU Bug is a Heisenbug!
But Tracing Still Sometimes Useful

Performance analysis of grace-period latencies
–Automatic grace-period-duration analysis of rcuperf runs:

• tools/testing/selftests/rcutorture/bin/kvm-recheck-rcuperf.sh 
• tools/testing/selftests/rcutorture/bin/kvm-recheck-rcuperf-ftrace.sh

Non-heisenbugs in grace-period computation
–There are scripts, but they will not be permitted to see the light of day

Situations where something doesn't happen
–Hard to place the printk()/WARN_ON() in such situations
–Because rcutorture failed to detect an injected bug on TREE01!!!

• But it did detect it on TREE02 through TREE08

Learning what RCU actually does
–Finding redundant execution (Frederic Weisbecker)



© 2016 IBM Corporation38

Tracing and Linux-Kernel RCU, June 3, 2016

Tracing to Analyze Failure to Detect Injected Bug

 Injected bug: Each CPU seeing a new grace period clears other 
CPUs' bits, thus asserting that their quiescent states have already 
passed

–Can result in too-short grace periods when other CPUs have not yet passed 
through a quiescent state

–Can result in grace-period hangs by preventing up-tree propagation
• But TREE01 has only one rcu_node structure, so no up-tree to prevent

Note that TREE01 enables preemption, but tests RCU-bh
–Readers need 50-ms delay to see bug, which are rare
–Add tracing to determine when these delays are occurring

Current result: Many ways for RCU to evade this bug!
–Still looking for possible rcutorture improvements...



© 2016 IBM Corporation39

Tracing and Linux-Kernel RCU, June 3, 2016

Recent Improvements In Use of Tracing



© 2016 IBM Corporation40

Tracing and Linux-Kernel RCU, June 3, 2016

Recent Improvements In Use of Tracing

Automatically dump ftrace buffer:
–When rcuperf completes: Gather grace-period performance data
–After rcutorture failures: Gather data on events leading to failure
–When rcu_dynticks detects idle entry/exit misnesting
–At RCU CPU stall warning time

However, you still need to:
–Build with CONFIG_RCU_TRACE=y
–Enable relevant RCU trace events, preferably before the failure



© 2016 IBM Corporation41

Tracing and Linux-Kernel RCU, June 3, 2016

Possible Future Improvements (Not Just Tracing)



© 2016 IBM Corporation42

Tracing and Linux-Kernel RCU, June 3, 2016

Possible Future Improvements (Not Just Tracing)

Run rcutorture in userspace (faster “hotplug” operations)

Arrange to run rcutorture more often on a variety of arches

Add more TBD nastiness to rcutorture

More TBD self-defense checks in RCU

Linux-kernel memory model
– http://www.rdrop.com/users/paulmck/scalability/paper/LinuxMM.2016.10.04c.LCE.pdf

Possibly formal verification in RCU regression testing...



© 2016 IBM Corporation43

Tracing and Linux-Kernel RCU, June 3, 2016

Formal Verification and Regression Testing:  
Requirements

(1)Either automatic translation or no translation required
– Automatic discarding of irrelevant portions of the code
– Manual translation provides opportunity for human error

(2)Correctly handle environment, including memory model
– The QRCU validation benchmark is an excellent cautionary tale

(3)Reasonable memory and CPU overhead
– Bugs must be located in practice as well as in theory
– Linux-kernel RCU is 15KLoC and release cycles are short

(4)Map to source code line(s) containing the bug
– “Something is wrong somewhere” is not a helpful diagnostic: I know bugs exist

(5)Modest input outside of source code under test
– Preferably glean much of the specification from the source code itself (empirical spec!)
– Specifications are software and can have their own bugs

(6)Find relevant bugs
– Low false-positive rate, weight towards likelihood of occurrence (fixes create bugs!)



© 2016 IBM Corporation44

Tracing and Linux-Kernel RCU, June 3, 2016

Promela/spin: Design-Time Verification

1993: Shared-disk/network election algorithm (pre-Linux)
–Hadn't figured out bug injection: Way too trusting!!!
–Single-point-of failure bug in specification: Fixed during coding

• But fix had bug that propagated to field:  Cluster partition
–Conclusion: Formal verification is trickier than expected!!!

2007: RCU idle-detection energy-efficiency logic
–(http://lwn.net/Articles/243851/)
–Verified, but much simpler approach found two years later
–Conclusion: The need for formal verification is a symptom of a too-

complex design

2012: Verify userspace RCU, emulating weak memory
–Two independent models (Desnoyers and myself), bug injection

2014: NMIs can nest!!!  Affects energy-efficiency logic
–Verified Andy's code, and no simpler approach apparent thus far!!!
–Note: Excellent example of empirical specification



© 2016 IBM Corporation45

Tracing and Linux-Kernel RCU, June 3, 2016

PPCMEM and Herd

Verified suspected bug in Power Linux atomic primitives

Found bug in Power Linus spin_unlock_wait()

Verified ordering properties of locking primitives

Excellent memory-ordering teaching tools
–Starting to be used more widely within IBM as a design-time tool

PPCMEM: (http://lwn.net/Articles/470681/)
–Accurate but slow

Herd: (http://lwn.net/Articles/608550/) 
–Faster, but some correctness issues with RMW atomics and lwsync
–Work in progress: Formalize Linux-kernel memory model

• With Alglave, Maranget, Parri, and Stern, plus lots of architects
• Hopefully will feed into improved tooling

Alglave, Maranget, Pawan, Sarkar, Sewell, Williams, Nardelli:
“PPCMEM/ARMMEM: A Tool for Exploring the POWER and ARM Memory Models”
Alglave, Maranget, and Tautschnig: “Herding Cats: Modelling, Simulation, Testing, and Data-mining for Weak Memory”



© 2016 IBM Corporation46

Tracing and Linux-Kernel RCU, June 3, 2016

C Bounded Model Checker (CBMC)

Nascent concurrency and weak-memory functionality

Valuable property: “Just enough specification”
–Assertions in code act as specifications!
–Can provide additional specifications in “verification driver” code

Verified very small portions of RCU
–Daniel Kroening, Oxford (publish/subscribe), myself (Tiny RCU)

Has been used to verify substantial portion of Tree RCU
–Lihao Liang, University of Oxford

And of SRCU's core algorithm (plus an improved version)
–Lance Roy, unaffiliated (improvements from Mathieu Desnoyers)

Conclusion: Promising, especially if SAT progress continues

Kroening, Clarke, and Lerda, “A tool for checking ANSI-C programs”, Tools and Algorithms 
for the Construction and Analysis of Systems, 2004, pp. 168-176.



© 2016 IBM Corporation47

Tracing and Linux-Kernel RCU, June 3, 2016

Nidhugg (Preview, Still Learning)

Not a full state-space exploration
–Must be paired with testing?

Finds situations where scheduling decisions and memory-
order changes could produce a significantly different result

More scalable than full state-space tools

Probably vulnerable to incomplete test suites



© 2016 IBM Corporation48

Tracing and Linux-Kernel RCU, June 3, 2016

Scorecard For Linux-Kernel C Code (Incomplete)

Promela PPCMEM Herd CBMC

(1) Automated

(2) Handle environment (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source code

(5) Modest input

(6) Relevant bugs ??? ??? ??? ???

Paul McKenney's first use 1993 2011 2014 2015

Promela MM: Only SC: Weak memory must be implemented in model
Herd MM: Some PowerPC and ARM corner-case issues
CBMC MM: Only SC and TSO
Note: All four handle concurrency!  (Promela has done so for 25 years!!!)



© 2016 IBM Corporation49

Tracing and Linux-Kernel RCU, June 3, 2016

Scorecard For Linux-Kernel C Code

Promela PPCMEM Herd CBMC Test

(1) Automated

(2) Handle environment (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source code

(5) Modest input

(6) Relevant bugs ??? ??? ??? ???

Paul McKenney's first use 1993 2011 2014 2015 1973

So why do anything other than testing?



© 2016 IBM Corporation50

Tracing and Linux-Kernel RCU, June 3, 2016

Scorecard For Linux-Kernel C Code

Promela PPCMEM Herd CBMC Test

(1) Automated

(2) Handle environment (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source code

(5) Modest input

(6) Relevant bugs ??? ??? ??? ???

Paul McKenney's first use 1993 2011 2014 2015 1973

So why do anything other than testing?
● Low-probability bugs can require expensive infinite testing regimen
● Large installed base will encounter low-probability bugs
● Safety-criitcal applications are sensitive to low-probability bugs



© 2016 IBM Corporation51

Tracing and Linux-Kernel RCU, June 3, 2016

Scorecard For Linux-Kernel C Code (Nidhugg TBD)

Promela PPCMEM Herd CBMC Test

(1) Automated

(2) Handle environment (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source code

(5) Modest input

(6) Relevant bugs ??? ??? ??? ???

Paul McKenney's first use 1993 2011 2014 2015 1973

So why do anything other than testing?
● Low-probability bugs can require expensive infinite testing regimen
● Large installed base will encounter low-probability bugs
● Safety-criitcal applications are sensitive to low-probability bugs



© 2016 IBM Corporation52

Tracing and Linux-Kernel RCU, June 3, 2016

Summary



© 2016 IBM Corporation53

Tracing and Linux-Kernel RCU, June 3, 2016

Summary

Tracing is a small but critically important part of RCU 
development tooling

RCU is becoming more tracing-friendly over time

Other tools making progress as well, even formal verification



© 2016 IBM Corporation54

Tracing and Linux-Kernel RCU, June 3, 2016

To Probe Deeper (RCU)
 https://queue.acm.org/detail.cfm?id=2488549

– “Structured Deferral: Synchronization via Procrastination” (also in July 2013 CACM)
 http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159 and 

http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
– “User-Level Implementations of Read-Copy Update”

 git://lttng.org/userspace-rcu.git (User-space RCU git tree)
 http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf

– Applying RCU and weighted-balance tree to Linux mmap_sem.
 http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf

– RCU-protected resizable hash tables, both in kernel and user space
 http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf

– Combining RCU and software transactional memory
 http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
 http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/

– “What is RCU?” Series
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

– RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.html

– System-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

– Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099

– History of RCU in Linux (Linux changed RCU more than vice versa)
 http://read.seas.harvard.edu/cs261/2011/rcu.html

– Harvard University class notes on RCU (Courtesy of Eddie Koher)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)



© 2016 IBM Corporation55

Tracing and Linux-Kernel RCU, June 3, 2016

To Probe Deeper (1/5)
 Hash tables:

– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e1.html Chapter 10

 Split counters:
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
– http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf 

 Perfect partitioning
– Candide et al: “Dynamo: Amazon's highly available key-value store”

• http://doi.acm.org/10.1145/1323293.1294281 
– McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

• http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5 
– McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”

• Embarrassing parallelism vs. humiliating parallelism
• https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-

grossly-sub-optimal  
– McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”

• http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf 
– Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary 

Resources”
• http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick_html/ 

– Turner et al: “PerCPU Atomics”
•  http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%20-

%20PerCpu%20Atomics.pdf



© 2016 IBM Corporation56

Tracing and Linux-Kernel RCU, June 3, 2016

To Probe Deeper (2/5)
 Stream-based applications:

– Sutton: “Concurrent Programming With The Disruptor”
• http://www.youtube.com/watch?v=UvE389P6Er4 
• http://lca2013.linux.org.au/schedule/30168/view_talk 

– Thompson: “Mechanical Sympathy”
• http://mechanical-sympathy.blogspot.com/

 Read-only traversal to update location
– Arcangeli et al: “Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5 

Kernel”
• https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcan

geli_html/index.html 
– Corbet: “Dcache scalability and RCU-walk”

• https://lwn.net/Articles/419811/ 
– Xu: “bridge: Add core IGMP snooping support”

• http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589 
– Triplett et al., “Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming”

• http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf 
– Howard: “A Relativistic Enhancement to Software Transactional Memory”

• http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf 
– McKenney et al: “URCU-Protected Hash Tables”

• http://lwn.net/Articles/573431/



© 2016 IBM Corporation57

Tracing and Linux-Kernel RCU, June 3, 2016

To Probe Deeper (3/5)
 Hardware lock elision: Overviews

– Kleen: “Scaling Existing Lock-based Applications with Lock Elision”
• http://queue.acm.org/detail.cfm?id=2579227 

 Hardware lock elision: Hardware description
– POWER ISA Version 2.07

• http://www.power.org/documentation/power-isa-version-2-07/ 
– Intel® 64 and IA-32 Architectures Software Developer Manuals

• http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html 
– Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”

• http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf 

 Hardware lock elision: Evaluations
– http://pcl.intel-research.net/publications/SC13-TSX.pdf 
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

 Hardware lock elision: Need for weak atomicity
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”

• http://research.sun.com/scalable/pubs/PODC03.pdf 
– Shavit et al: “Data structures in the multicore age”

• http://doi.acm.org/10.1145/1897852.1897873 
– Haas et al: “How FIFO is your FIFO queue?”

• http://dl.acm.org/citation.cfm?id=2414731 
– Gramoli et al: “Democratizing transactional programming”

• http://doi.acm.org/10.1145/2541883.2541900 



© 2016 IBM Corporation58

Tracing and Linux-Kernel RCU, June 3, 2016

To Probe Deeper (4/5)
 RCU

– Desnoyers et al.: “User-Level Implementations of Read-Copy Update”
• http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf 
• http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf 

– McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
• http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf 
• http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf 

– McKenney: “Structured deferral: synchronization via procrastination”
• http://doi.acm.org/10.1145/2483852.2483867 

– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/ 

 Possible future additions
– Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating 

Systems Kernels”
• http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf 

– Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for 
Multicore Processors”

• http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf 
– McKenney: “N4037: Non-Transactional Implementation of Atomic Tree Move”

• http://www.rdrop.com/users/paulmck/scalability/paper/AtomicTreeMove.2014.05.26a.pdf 
– McKenney: “C++ Memory Model Meets High-Update-Rate Data Structures”

• http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf



© 2016 IBM Corporation59

Tracing and Linux-Kernel RCU, June 3, 2016

To Probe Deeper (5/5)
 RCU theory and semantics, academic contributions (partial list)

– Gamsa et al., “Tornado: Maximizing Locality and Concurrency in a Shared Memory 
Multiprocessor Operating System”

• http://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdf
– McKenney, “Exploiting Deferred Destruction: An Analysis of RCU Techniques”

• http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
– Hart, “Applying Lock-free Techniques to the Linux Kernel”

• http://www.cs.toronto.edu/~tomhart/masters_thesis.html
– Olsson et al., “TRASH: A dynamic LC-trie and hash data structure”

• http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4281239
– Desnoyers, “Low-Impact Operating System Tracing”

• http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
– Dalton, “The Design and Implementation of Dynamic Information Flow Tracking ...”

• http://csl.stanford.edu/~christos/publications/2009.michael_dalton.phd_thesis.pdf
– Gotsman et al., “Verifying Highly Concurrent Algorithms with Grace (extended version)”

• http://software.imdea.org/~gotsman/papers/recycling-esop13-ext.pdf 
– Liu et al., “Mindicators: A Scalable Approach to Quiescence”

• http://dx.doi.org/10.1109/ICDCS.2013.39
– Tu et al., “Speedy Transactions in Multicore In-memory Databases”

• http://doi.acm.org/10.1145/2517349.2522713
– Arbel et al., “Concurrent Updates with RCU: Search Tree as an Example”

• http://www.cs.technion.ac.il/~mayaarl/podc047f.pdf



© 2016 IBM Corporation60

Tracing and Linux-Kernel RCU, June 3, 2016

Legal Statement

This work represents the view of the author and does not 
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks 
of International Business Machines Corporation in the United 
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be 
trademarks or service marks of others.



© 2016 IBM Corporation61

Tracing and Linux-Kernel RCU, June 3, 2016

Questions?


	IBM Presentation Template Full Version
	Selecting a template
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

