
Philippe Proulx
pproulx@efcios.com

eepp

Tracing SummitTracing Summit – 27 Oct. 2017 – 27 Oct. 2017

Introduction
to CTF 2

Common Trace Format

mailto:pproulx@efficios.com

Introduction to CTF 2 (Tracing Summit 2017) 2/21

ContentsContents

1. What is CTF?
2. Current CTF ecosystem
3. CTF 1 limitations solved with CTF 2
4. Planned adoption
5. Resources
6. Q&A

Introduction to CTF 2 (Tracing Summit 2017) 3/21

● “Common Trace Format”
● Self-described binary trace format
● CTF 1 specifed in 2010-2011
● Focused on producer’s performance

● Supports big-endian and little-endian felds
● Supports bit felds
● Supports custom feld alignments
● Supports multiple data streams

● Data streams of packets of event records

What is CTF?What is CTF?

Introduction to CTF 2 (Tracing Summit 2017) 4/21

What is CTF?What is CTF?

Data stream #1

Data stream #2

Data stream #3

Metadata stream

One or more data streams:
● Binary data from tracer
● Contains packets of event

records

One metadata stream:
● TSDL (CTF 1) or JSON (CTF 2)
● Describes the data streams

Anatomy of a CTF trace:

Introduction to CTF 2 (Tracing Summit 2017) 5/21

CTF data streamCTF 1 metadata stream
// ...
event.header := struct {
 uint64le timestamp;
 uint16be id;
};
// ...
event {
 name = new_msg;
 id = 23;
 fields := struct {
 uint32le msg_id;
 string msg;
 } align(32);
};
// ...

...7d ee 9c b8 8b 99 d1
89 dd ed 84 c3 02 00 00
00 17 00 00 2d ff 00 00
48 65 6c 6c 6f 2c 20 57
6f 72 6c 64 21 00 2d ff
40 52 d9 8d ff 90 ff...

Encoded event record:

● Name: “new_msg”
● timestamp: 15h47:11.2839912
● msg_id: 65325 (0xff2d)
● msg: “Hello, World!”

What is CTF?What is CTF?
Example:

6/21

babeltrace
(CLI)

LTTng
analyses

Trace Compass
(GUI)

$ perf data
 convert
 --to-ctf

barectf

perf trace
(perf.data)

$ trace-cmd
 convert
 --to-ctf

LTTng 2

CTF writer lib

Ftrace
source

Custom
source

Custom
trace

format

Ftrace
trace

(trace.dat)

CTF
source

babeltrace
(CLI)

LTTng Scope
(GUI)

CTF
trace

CTF writer lib

CTF
sink Babeltrace

Python
bindings

Trace data

CTF producer

CTF consumer

Potential element

CTF ecosystem:

Introduction to CTF 2 (Tracing Summit 2017) 7/21

Metadata language (TSDL) is
hard to consume

Limitations of CTF 1Limitations of CTF 1

● Complex grammar (subset of C w/ additions)
● Many implicit parsing rules, e.g.:

● “Magic” feld names, e.g. uuid, id, timestamp
● Lexically scoped type aliases
● Useful when you write the metadata stream

manually, but who does that?

Introduction to CTF 2 (Tracing Summit 2017) 8/21

Metadata language (TSDL) is
hard to consume

Limitations of CTF 1Limitations of CTF 1

struct {
 typealias integer {size = 33;} :=
 some_int;
 enum : integer {
 size = 17;
 align = 0b100;
 byte_order = be; // big endian
 base = x; /* "hex" */
 signed = true;
 } {
 INIT = 0x23d,
 "/* best */ state" = -50 ... 21,
 } state[17]
 [stream.packet.context.a.b.c];
 variant var <previous.selection> {
 some_int CHOICE0;
 struct {string z;}
 align(32) SOME_ENTRY[2];
 };
} align(64);

Parsing this
valid TSDL is
left as an
exercise to
the reader:

Introduction to CTF 2 (Tracing Summit 2017) 9/21

Metadata language (TSDL) is
hard to consume

Limitations of CTF 1Limitations of CTF 1

Solution:
● Use JSON
● Require explicit references and descriptions

so as to simplify the consumers
● Have only one level of type aliases
● Keep semantic compatibility with TSDL

Introduction to CTF 2 (Tracing Summit 2017) 10/21

Metadata language (TSDL)
is hard to consume

Limitations of CTF 1Limitations of CTF 1

event {
 id = 23;
 name = "my_event";
 loglevel = 4;
 fields := struct {
 my_int intField;
 string stringField;
 } align(64);
};

{
 "fragment": "event-record-class",
 "user-attrs": {
 "diamon.org/ctf/ns/basic": {
 "name": "my_event",
 "log-level": 4
 }
 },
 "id": 23,
 "payload-field-type": {
 "field-type": "struct",
 "alignment": 64,
 "fields": [
 {
 "name": "intField",
 "field-type": "my_int"
 },
 {
 "name": "stringField",
 "field-type": {
 "field-type": "string"
 }
 }
]
 }
}

Introduction to CTF 2 (Tracing Summit 2017) 11/21

Metadata language (TSDL) is
hard to extend

Limitations of CTF 1Limitations of CTF 1

● Strict grammar
● No extension points specifed
● For example, metadata cannot express:

● Format strings for types
● Tag a specifc feld as an instruction pointer
● Tag a specifc feld as a stack trace

● We have to rely on feld names: this is
precarious

Introduction to CTF 2 (Tracing Summit 2017) 12/21

Metadata language (TSDL) is
hard to extend

Limitations of CTF 1Limitations of CTF 1

event.context := struct {
 uint32 ip; /* instruction pointer */
 ...;
};

“Magic” ip feld in event record’s context represents
an instruction pointer in LTTng CTF traces.
It could mean “IPv4 address” for another tracer, for
example.

Introduction to CTF 2 (Tracing Summit 2017) 13/21

Metadata language (TSDL) is
hard to extend

Limitations of CTF 1Limitations of CTF 1

Solution:
● Have a user-attrs property in selected

metadata objects
● Field types, event classes, stream classes, trace, etc.

● User attributes are part of a specifc
namespace (tracer, vendor, specifcation,
etc.) to avoid conficts

Introduction to CTF 2 (Tracing Summit 2017) 14/21

Metadata language (TSDL) is
hard to extend

Limitations of CTF 1Limitations of CTF 1

{
 ...,
 "event-record-context-field-type": {
 "field-type": "struct",
 "fields": [
 {
 "name": "func_addr",
 "field-type": "uint64",
 "user-attrs": {
 "lttng.org/ns/ctf": { "is-ip": true }
 }
 },
 ...
]
 }
}

Not named ip

Namespace

Introduction to CTF 2 (Tracing Summit 2017) 15/21

CTF 1 is missing
useful feld types

Limitations of CTF 1Limitations of CTF 1

CTF 1 integer feld types are always encoded
on a fxed number of bits, but in some
scenarios, the values are often small.
Solution:
● Add variable-length integer feld type
● Add variable-length enumeration feld type
● Variable-length feld types use the popular LEB128

encoding (DWARF, protobuf, Android’s DEX)

Introduction to CTF 2 (Tracing Summit 2017) 16/21

CTF 1 is missing
useful feld types

Limitations of CTF 1Limitations of CTF 1

CTF 1 has no way to express boolean feldss
we currently use integer felds for this.
Boolean and integer programming language
types have diferent semantics.
Solution:
● Add fxed-size boolean feld type
● All bits cleared means false, anything else means true

Introduction to CTF 2 (Tracing Summit 2017) 17/21

CTF 1 is missing
useful feld types

Limitations of CTF 1Limitations of CTF 1

CTF 1 has no way to express null feldss we
currently use empty structure felds for this.
Solution:
● Add 0-bit null feld type
● Used to represent nothing as a variant feld type’s choice
● Used to align the consumer without consuming actual

payload bits

Introduction to CTF 2 (Tracing Summit 2017) 18/21

CTF 1 is missing useful feld types

Limitations of CTF 1Limitations of CTF 1

CTF 1 has no way to indicate that a given binary
payload can be decoded in more than one way.
Solution:
● Add union feld type
● Decoding position must be the same after decoding,

whichever feld type the consumer chooses to use
● Used to indicate alternative “views” of binary data (like in C)
● Used to introduce new feld types in future CTF 2 revisions
● Examples:

● 32-bit bit-endian integer vs. 4-byte array for IPv4 address
● Sequence of bytes (known as of 2.0) vs. UTF-16 string

(possible future feld type, unknown as of 2.0)

Introduction to CTF 2 (Tracing Summit 2017) 19/21

● Babeltrace (consumer and producer): v2.1
● LTTng: ~v2.11/v2.12 if the discussion is active enough.

● Condition: Babeltrace v2.1 must be
released/packaged.

● Idea: Implement a temporary hybrid mode where you
can choose to generate either a CTF 1 or a CTF 2
trace. No interest so far.

● barectf: As soon as Babeltrace v2.1 is released.
● LTTng Scope: Synchronized with LTTng producing

CTF 2 traces.

CTF 2: planned adoptionCTF 2: planned adoption

Introduction to CTF 2 (Tracing Summit 2017) 20/21

● CTF website: http://diamon.org/ctf/
● CTF 2 proposal:

● https://lists.linuxfoundation.org/pipermail/diamon-discuss/201
6-October/000099.html

● HTML version:
● http://diamon.org/ctf/files/CTF2-PROP-1.0.html

● Other documents:
● http://diamon.org/ctf/files/CTF2-BASICATTRS-1.0.html
● http://diamon.org/ctf/files/CTF2-DOCID-1.0.html
● http://diamon.org/ctf/files/CTF2-FS-1.0.html
● http://diamon.org/ctf/files/CTF2-PMETA-1.0.html

ResourcesResources

http://diamon.org/ctf/
https://lists.linuxfoundation.org/pipermail/diamon-discuss/2016-October/000099.html
https://lists.linuxfoundation.org/pipermail/diamon-discuss/2016-October/000099.html
http://diamon.org/ctf/files/CTF2-PROP-1.0.html
http://diamon.org/ctf/files/CTF2-BASICATTRS-1.0.html
http://diamon.org/ctf/files/CTF2-DOCID-1.0.html
http://diamon.org/ctf/files/CTF2-FS-1.0.html
http://diamon.org/ctf/files/CTF2-PMETA-1.0.html

Introduction to CTF 2 (Tracing Summit 2017) 21/21

? ?
?

Q&AQ&A

