
Bringing the Windows .NET Performance
Diagnostics Experience to Linux

Brian Robbins

Microsoft

About Me

• Developer at Microsoft on .NET Reliability and Performance Team.

• Responsible for the performance of the entire .NET stack.
• Runtime Applications.

Agenda

• What is .NET Core?

• Managed vs. native applications

• How we capture performance trace data

• Demos - What works and what doesn’t

• Opportunities for future improvement

Quick Poll

Raise your hand if:

• You have done a perf investigation.

• You have done a managed perf investigation.
• Java, Python, .NET, etc.

• Have had trouble getting stacks and symbols for managed code.

• Have tried to understand the behavior of runtime components
• Garbage Collection, Just-In-Time Compiler, etc.

This talk is all about how we do these things for .NET on Linux.

Our Goal

• To enable use of existing Linux tracing tools to understand the
behavior of .NET apps.

• If you know of something we can do to improve, we want to know
about it.

.NET Core

• Write .NET apps (C#, VB, and F#) that run on Windows, Linux and OSX.

• Code is compiled down to MSIL – compiled to native at runtime.
• Called “Managed Code”

• Standalone (can be packaged with app).

• OSS – Runtime, libraries, compiler, languages and tools.

• Supported in production by Microsoft.

• CoreCLR: Runtime responsible for app execution.
• CLR == Common Language Runtime

Managed vs. Native Applications

• Managed applications are native applications + additional services.

• Managed Code

• Garbage Collection

• Just-In-Time Compiler / Interpreter

• Interop

• Instrumentation and special handling are needed to understand
behavior.

Perfcollect - Collection Script

• What we use for Linux perf investigations.

• Installs dependencies for new users.

• Enables and disables tracers.

• “Good” defaults, modes for specific investigations.

• Produces an archive that contains everything.
• Trace files
• Managed/native symbols

• http://aka.ms/perfcollect

http://aka.ms/perfcollect

Demo: CPU Flamegraph

• Use perfcollect to collect cpu-clock events via perf.

• JIT-compiled code symbols via /tmp/perf-$pid.map.

• Use Brendan Gregg’s FlameGraph tools
• http://brendangregg.com/FlameGraphs/cpuflamegraphs.html.

http://brendangregg.com/FlameGraphs/cpuflamegraphs.html

.NET Grew Up on Windows

• Event Tracing for Windows (ETW)
• High performance logger built into the OS
• Machine-wide traces
• CPU samples / Context switches with call stacks
• Kernel and user-mode events with call stacks

• Symbols
• Released software symbols published to symbol servers
• Symbols automatically downloaded by viewer at analysis time
• Use DLL signature (like buildid) as lookup key

• One trace file spans kernel, runtime, libraries, and app.

... And then Came to Linux

• Goal: Enable the analysis techniques from Windows using the Linux
ecosystem.

• We use perf and LTTng - Similar functionality and goals to ETW.
• Machine-wide

• Event “driven” – Kernel and user-mode

• Some stacks

Why Use Both Perf and LTTng?

Perf:
• Sample-based profiler with call stacks - Understand arbitrary code behavior.

• Kernel events with call stacks.

• Doesn’t support user-mode tracepoints.

LTTng:
• User-mode tracepoints – Instrument runtime services to gain further insight.

• Persistent and real-time traces – can be used for analysis and monitoring.

Missing: Stacks for usermode tracepoints.

Data Collected

Machine-Level:

• CPU samples (cpu-clock), Scheduling events (sched)

Runtime:

• Object Allocation, GC, JIT, etc.

Managed Code Instrumentation:

• App-level “tracepoints” – Ex: Start/Stop WebRequest

What We Can Do Today

Using Linux Tools:

• Resource Analysis (CPU/Blocked time)

• Managed runtime event collection
• Anyone can write their own analysis scripts on this data.

• GC, JIT Reporting

Using Windows Tools:

• Advanced analysis of managed runtime services
• GC, JIT, ThreadPool, Managed Exceptions, etc.

• Limited object allocation profiling – no stacks.

Internals: Stack Walking

• Compile native code with –fno-omit-frame-pointer.

• JIT and pre-compiled managed code preserve frame pointer.

• Still experience broken stacks when libraries don’t preserve the frame
pointer.
• Not a new problem.

Internals: Symbol Resolution

• CoreCLR generates /tmp/perf-$pid.map.
• Extensibility point in perf – contains records for JIT-compiled code.
• 00007FDA67060480 61 void [serializationtest] SerializationComparision::Main()

• perf resolves JIT compiled code using the map file.

• Sticking Point: Pre-compiled managed code.
• Cross-platform binaries – contain IL + metadata + pre-compiled code

• Can’t just convert to ELF – large platform specific investment.

• Can’t use /tmp/perf-$pid.map as a workaround.

• Generate map files that are consumable by custom .NET tools.

Internals: Symbol Acquisition

• All symbols embedded in trace archive.

• Native Symbols
• Function names present in binary to simplify performance tracing.
• Debug symbols must be downloaded manually.

• Managed Symbols
• Generated at collection time.

• JIT: Generated by runtime (/tmp/perf-$pid.map)
• Pre-Compiled: Generated by offline utility (crossgen)

• Future: Would like a symbol server
• Automatic consumption at analysis time of both managed and native symbols.
• We are looking at ways to participate in this effort / considering a proposal.

Demo: GC/JIT Analysis

• Capture trace data from GC/JIT via LTTng tracepoints.
• Instrumentation in the runtime that is emitted via LTTng.

• Run PerfView to generate reports
• Existing .NET tool ported from Windows.

• Can read CTF and generate reports based on trace data.

Internals: Tracepoint Generation

• Instrumentation is sent to different systems based on the platform.
• Windows: ETW
• Linux: LTTng

• Use build scripts to generate tracepoint definitions and stub functions that
log them. Runtime instrumented with calls to stubs.

• Some runtime services are implemented in managed code. Applications
can add their own instrumentation.

• Unfortunately, instrumentation in managed code funnels to one tracepoint,
which makes filtering hard.
• Want dynamic tracepoint registration.

Internals: Consuming CTF Traces in PerfView

• PerfView contains custom report generation code – consumes event
stream and builds reports.

• Underlying managed trace data reader called TraceEvent
• Not to be confused with TRACE_EVENT.

• Reads multiple trace formats (ETW, CTF, XML, etc.)

• Exposes standard consumption API.

• Can handle live sessions for monitoring scenarios.
• More to come on this in the next session from our friends at Criteo.

Wrapping Up

Opportunities for Future Improvement

Managed runtimes have extra needs over and above native code.

• Better support for JIT-compiled and pre-compiled cross-platform code
(Mostly around symbols)

• Stacks for user-mode tracepoints (Tracing runtime services)

• Dynamic registration of tracepoints (Tracing from within managed
code)

Our Goal

• To enable use of existing Linux tracing tools to understand the
behavior of .NET apps.

• If you know of something we can do to improve, we want to know
about it.

Resources

PerfCollect: https://aka.ms/perfcollect

Demo Code: https://github.com/brianrob/sample-
code/tree/tracingsummit2017/talks/TracingSummit2017

CoreCLR Linux Tracing HOWTO:
https://github.com/dotnet/coreclr/blob/master/Documentation/projec
t-docs/linux-performance-tracing.md

PerfView: https://github.com/microsoft/perfview

https://aka.ms/perfcollect
https://github.com/brianrob/sample-code/tree/tracingsummit2017/talks/TracingSummit2017
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/linux-performance-tracing.md
https://github.com/microsoft/perfview

Thank You!

Questions and Feedback:

Brian Robbins

brianrob@microsoft.com

GitHub: brianrob

mailto:brianrob@Microsoft.com

