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Problem statement
This talk is about tail latency in real user-facing datacenter transactions. It is not 
about batch processing throughput, nor about benchmarks.

Context: A datacenter of perhaps 20,000 servers running software services that 
spread work for a user-facing transaction across a few hundred or thousand 
machines in parallel. Each server handles hundreds of transactions per second.

Some transactions are unusually slow, but not repeatably.
Slow transactions occur unpredictably, but there are several per minute.

We wish to observe where all the time goes in such transactions, and observe why 
they are slow.



Richard Sites 2017.10.27

Problem statement

☞ Some transactions are unusually slow, but not repeatably.

∴ There is some source of interference just before or during a slow transaction.

Understanding tail latency requires complete traces of CPU events over a few 
minutes, with small enough CPU and memory overhead to be usable under 
busiest-hour live load.

Existing tracing tools have much-too-high overhead.

Problem: build better tail-latency observation tools
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KUTrace solution
KUTrace uses minimal Linux kernel patches on a single server to 

trace every transition between kernel- and user-mode execution, 
on every CPU core, with small enough overhead to use routinely on live loads. 
Postprocessing does the rest.

KUTrace traces all executables unmodified

Why K/U transitions? The data gathered is sufficient to identify where 100% of the 
CPU time goes, and also to observe:

All kernel, unrelated-process, and cross-thread interference
All reasons for waiting: disk, network, CPU, timer, software locks
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KUTrace solution
Note that KUTrace is a one-trick pony -- it does one thing well and does not do 
anything else. It shows the entire server CPU dynamics for a minute or so.

No fine-grained user-mode per-routine timing 
No fine-grained kernel-mode per-routine timing 
No user-mode debugging 
No kernel-mode debugging
No interpretive language 
No subsetting
No sampling

Programs/transactions being observed are assumed to be normally fast but with 
unexplained long tail latency
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KUTrace solution
For hundreds to thousands of transactions per second, each normally taking about 
1 msec to 1 second on a server, KUTrace is able to observe the 99th percentile 
slow transactions and their surrounding context whenever they occur.

The "interesting" slow transactions are fast if run again, and typically only occur on 
live load during the busiest hour of the day. 

Their slowness is entirely related to some unknown interference, which is why 
their dynamics can only be observed in live load.

Once the true dynamics are observed, fixes often take only 20 minutes.
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Design goals
Record every kernel- user-mode transition, with nothing missing

Less than 1% CPU overhead

Less than 1% memory overhead

For 30-120 seconds

On user-facing live load during the busiest hour of the day -- about 200,000 
transitions per CPU core per second
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Goals drive the design, CPU overhead
Less than 1% CPU overhead, about 200,000 transitions per CPU core per second
=> Record to RAM; nothing else is fast enough
=> Each CPU core must write to its own buffer block to avoid cache thrashing

200,000 transitions = one every 5 usec. 1% overhead = 50 nsec budget
50 nsec ~= one cache miss to RAM, so 

=> Size of each trace entry must be much less than a cache line; 4 8 and 16 bytes 
are the only realistic choices. 
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Goals drive the design, memory overhead
Less than 1% memory overhead, for 30-120 seconds
For a server with 256 GB of main memory, 1% is ~2.5 GB

For N bytes per trace entry and 24 CPU cores and 200K transitions per second, 
60 seconds needs

24 * 200K * 60 * N bytes 
= 288M * N bytes

=> This implies that N <= 9. I chose four bytes.
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Goals drive the design, memory overhead
At four bytes each, a trace entry has room for

20-bit timestamp
12-bit event number

  timestamp: cycle counter shifted 6 bits = ~20ns resolution, 20ms wrap
    must guarantee at least one event per 20ms to reconstruct full time -- timer IRQ
  
  event: ~300 system calls, 300 returns, 300 32-bit system calls, 300 returns, 
    12 interrupts, 12 faults, a few others

timestamp event
20 12
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Goals drive the design -- important embellishment
Ross Biro observed in 2006 that it is particularly useful to have some bits of the 
first parameter of any syscall, and to have the matching return value. To do so, 
we put call + return into a single 8-byte entry

20-bit timestamp
12-bit event number
8-bit delta-time (call to return)
8-bit retval
16-bit arg0

As a useful side-effect, this makes trace-entry recording substantially faster.
(Occasionally, if delta or retval does not fit in 8 bits, or if some event is inbetween, two entries are used.)

 

delta retval arg0timestamp event
20 12 8 8 16
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Goals drive the design
Modest kernel patches to capture each event. apic.c entire patch

  ...
if (dclab_tracing)
(*dclab_global_ops.dclab_trace_1)(DCLAB_TRACE_IRQ + kTimer, 0);

local_apic_timer_interrupt();

if (dclab_tracing)
(*dclab_global_ops.dclab_trace_1)(DCLAB_TRACE_IRQRET + kTimer, 0);

exiting_irq();
set_irq_regs(old_regs);

  ...
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Goals drive the design -- speed even with preemptable kernel

Normal path for making one entry, ~40cy

void trace_1(u64 num, u64 arg) {
    if (!dclab_tracing) {return;}
    Insert1((num << 32) | arg);
}

u64 Insert1(u64 arg1) {
    u64 now = get_cycles();
    u64* claim = GetClaim(1);
    if (claim != NULL) {
        claim[0] = arg1 | ((now >> RDTSC_SHIFT) << 44);
        return 1;
    }
  ...
}

19

u64* GetClaim(int len) {
    tb = &get_cpu_var(dclab_traceblock_per_cpu);
    nexti = atomic64_read(&tb->next);
    limiti = tb->limit;
    if (nexti < limiti) {
        u64* myclaim = (atomic64_add_return(
            len * sizeof(u64), &tb->next)) - len;
        if (myclaim < limiti) {
            put_cpu_var(dclab_traceblock_per_cpu);
            return myclaim;
        }
    }
  ...
}

no
pre-
empt
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Tracing Design results
==> 50 nsec trace-entry budget 

Actual is 4x better:
~12.5 nsec and four bytes per transition

So 25 nsec and 8 bytes per syscall/return or interrupt/return or fault/return pair

1/4 of 1% CPU overhead, 1/4 of 1% RAM overhead for 30-60 seconds of trace

21
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Tracing Design results, full system
Linux loadable module, reserve kernel ram, patches to look at trace bit, call 
module routines.

Routines insert trace items, occasionally allocate new trace blocks

Control interface to start, stop, extract completed trace
User-mode library to optionally insert human-readable markers

Postprocessing to turn transition points into time-span durations
Postprocessing to turn into pictures

22
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Tracing Design results
Postprocessing 1
  Takes raw binary trace file of transitions and creates time-spans
  Takes time-spans and names embedded in trace (process, syscall, etc.) and
    expands to have name for most spans
  Propagates current CPU#, process id#, RPCID# to every span
  Writes .json file

  System sort of .json file by start times
 

23
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Tracing Design results
Postprocessing 2
  Takes small HTML file plus wonderful d3 javascript library plus .json file
  and displays picture of every CPU core every nanosecond

  Users can pan/zoom/label as desired

  Shows all threads processing our slow transaction
  Shows interference from other threads
  Shows not-processing wait time

  Can easily time-align across multiple machines
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Client
machine

Server
machine

Note:
gettimeofday() differs 
by 16ms

Postprocessing

Nagle's algorithm delays response by 40 msec

time(sec) C Ev  name
28.9995927 0 801  syswrite
28.9996293 0 a01  return, 36.6us
28.9996302 1 0000 -idle-
28.9996333 0 80c  sysbrk
28.9996480 1 5d1  eth0
28.9996764 1 5d1  eth0
28.9997007 0 a0c  ret brk, 67.4us
28.9997015 0 823  nanosleep
28.9997038 0 0000 -idle-
28.9997504 0 5ef  local_timer_vector
28.9997534 0 59a5 bash
28.9997540 0 a23  ret nanosleep 52u
  C: CPU#    Ev: event#
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Display Design
Goal: Turn time-spans into a complete picture of 30-120 seconds of all CPU cores 
and what they are doing every nanosecond. Allow pan and zoom.

Result: The .json file file derived from each trace has all the time-spans sorted by 
start time. A modest amount of HTML/javascript plus Mike Bostock's excellent 
d3.js library provides the mechanism.

But more than ~25,000 spans on screen at once is slow. So the postprocessing 
allows combining spans to give a time granularity of 1us to 1ms+, and allows 
picking a subset of the trace time. Using these gives full-resolution display 
interactions of interest.
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Display Design
Goal: Human-meaningful labels

Result: The .json file file derived from each trace has human-readable names for 
all time-spans. These can optionally be displayed for any span or for on-screen 
groups of spans.

The raw traces have an initial bunch of entries for the names of every syscall, 
interrupt, fault. Whenever a context switch encounters a new process id, the name 
of that process is added to the raw trace.

User code may optionally add marker entries to the trace, highlighting areas of 
interest.
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hello world example trace (hello, /hello annotation added for talk)
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hello world example trace (hello, /hello annotation added for talk)
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./hello_world
./hello_world hello world\n $ 

eth0

sshd

hello

kworker
bash
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hello world example trace (hello, /hello annotation added for talk)
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./hello_world
./hello_world hello world\n $ 

eth0

sshd

hello

kworker
bash
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hello world example trace, main() 80 usec across

32

eth0

sshd

hello

kworker
bash

sshd

kworker
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hello world example trace, main() 80 usec across
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eth0

sshd

hello

kworker
bash

sshd

kworker

No C6 wakeup delay CPU 1 to 3 
because they are two hyperthreads of 
the same physical core; 3 woke up 
back when 1 did

No C6 wakeup delay CPU 1 to 3 
because they are two hyperthreads of 
the same physical core; 3 woke up 
back when 1 did
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Something you have never 

observed  before
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IPC, instructions per cycle at nsec scale
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IPC, instructions per cycle at nsec scale

 ~0.25 IPC ~2 IPC~1 IPC~0.5 IPC
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IPC, instructions per cycle at nsec scale

After syswrite() call, 
user-mode program IPC 
slow then increases 

 ~0.25 IPC ~2 IPC~1 IPC~0.5 IPC



Richard Sites 2017.10.27

IPC, instructions per cycle at nsec scale

page-fault code gets faster 
at reuse

 ~0.25 IPC ~2 IPC~1 IPC~0.5 IPC
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Direct observation of cross-CPU communication

IPI send to resched 
interrupt 1.2 usec,
90ns IRQ execution

sched code 2nd part fastersched code, rcu callback, 
sched 2nd part faster
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Direct observation of cross-thread interference

Top/bot L3 cache sweeps 
slow each other down

Top L3 cache sweep + bot L1 
cache sweep, no slowdown



Richard Sites 2017.10.27

Display Demo
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Comparisons
Yet another tracing facility?

All 26 exist: atrace, btrace, ctrace, ... ztrace

But few with the global scope and efficiency to address the datacenter 
environment. 

For example, strace[6] has a tracing overhead of about 350x KUtrace
Even tcpdump's [10] best-case CPU overhead of about 7% makes it too slow for 
the datacenter environment

43
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Tool All 
programs

System 
calls

Interrupts 
& traps

Scripts, 
or ASCII 

getuid() 
trace ovhd

Time 
overhead

Space 
overhead

KUtrace ✔ ✔ ✔ 25ns 1x 1x

G.ktrace[14] ✔ ✔ ✔ 200ns 8x 12x

dtrace[1] ✔ ✔ ✘ 30x

ftrace[2] ✔ ✔ ✔ ✘ 587ns

ktrace[3] ✔ ✔

ltrace[4] ✔ ✘

LTTng[5] ✔ ✔ ✔ 449ns 16x 8x

strace[6] ✔ ✘ 350x

straceNT[7] ✔ ✔

SystemTap[8] ✔ ✔ ✘

truss[9] ✔ ✘
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Comparison notes
An earlier version of KUtrace was built at Google circa 2006 by Ross Biro and the 
author. David Sharp took over that work and created the second more 
easily-maintained but slower version. It is in the table above as G.ktrace, and 
under the name ktrace in [12] and [14], not to be confused with the FreeBSD 
ktrace[3]. Sharp gives some competitive performance numbers in [13].

Trace systems with scripts or ASCII output have high tracing overhead, so can't 
be used on live datacenter traffic.

Some facilities compensate for high tracing overhead by selectively disabling of 
trace points, but that destroys the ability to observe interference mechanisms.
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Conclusions
There is a need for something like KUtrace in datacenters

Kernel-user transitions are a good cutpoint: not too much, not too little data

Careful engineering is necessary to make tracing fast/small

A little extra information, especially human-meaningful names, is important/cheap

Having a good display mechanism makes traces useful

47
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Questions?

Enjoy.
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