
Richard Sites 2017.10.27

KUTrace: Where have all the
nanoseconds gone?

Richard Sites, Invited Professor EPFL
2017.10.27

Tracing Summit 2017, Prague

http://tracingsummit.org/wiki/TracingSummit2017

Richard Sites 2017.10.27

Outline
Observability problem statement
KUTrace solution

Tracing design goals
Goals drive the design
Results

Display Design

Comparisons
Conclusions

Richard Sites 2017.10.27

Observability problem statement

3

Richard Sites 2017.10.27

Problem statement
This talk is about tail latency in real user-facing datacenter transactions. It is not
about batch processing throughput, nor about benchmarks.

Context: A datacenter of perhaps 20,000 servers running software services that
spread work for a user-facing transaction across a few hundred or thousand
machines in parallel. Each server handles hundreds of transactions per second.

Some transactions are unusually slow, but not repeatably.
Slow transactions occur unpredictably, but there are several per minute.

We wish to observe where all the time goes in such transactions, and observe why
they are slow.

Richard Sites 2017.10.27

Problem statement

☞ Some transactions are unusually slow, but not repeatably.

∴ There is some source of interference just before or during a slow transaction.

Understanding tail latency requires complete traces of CPU events over a few
minutes, with small enough CPU and memory overhead to be usable under
busiest-hour live load.

Existing tracing tools have much-too-high overhead.

Problem: build better tail-latency observation tools

Richard Sites 2017.10.27

KUTrace solution

6

Richard Sites 2017.10.27

KUTrace solution
KUTrace uses minimal Linux kernel patches on a single server to

trace every transition between kernel- and user-mode execution,
on every CPU core, with small enough overhead to use routinely on live loads.
Postprocessing does the rest.

KUTrace traces all executables unmodified

Why K/U transitions? The data gathered is sufficient to identify where 100% of the
CPU time goes, and also to observe:

All kernel, unrelated-process, and cross-thread interference
All reasons for waiting: disk, network, CPU, timer, software locks

Richard Sites 2017.10.27

KUTrace solution
Note that KUTrace is a one-trick pony -- it does one thing well and does not do
anything else. It shows the entire server CPU dynamics for a minute or so.

No fine-grained user-mode per-routine timing
No fine-grained kernel-mode per-routine timing
No user-mode debugging
No kernel-mode debugging
No interpretive language
No subsetting
No sampling

Programs/transactions being observed are assumed to be normally fast but with
unexplained long tail latency

Richard Sites 2017.10.27

KUTrace solution
For hundreds to thousands of transactions per second, each normally taking about
1 msec to 1 second on a server, KUTrace is able to observe the 99th percentile
slow transactions and their surrounding context whenever they occur.

The "interesting" slow transactions are fast if run again, and typically only occur on
live load during the busiest hour of the day.

Their slowness is entirely related to some unknown interference, which is why
their dynamics can only be observed in live load.

Once the true dynamics are observed, fixes often take only 20 minutes.

Richard Sites 2017.10.27

Tracing design goals

10

Richard Sites 2017.10.27

Design goals
Record every kernel- user-mode transition, with nothing missing

Less than 1% CPU overhead

Less than 1% memory overhead

For 30-120 seconds

On user-facing live load during the busiest hour of the day -- about 200,000
transitions per CPU core per second

Richard Sites 2017.10.27

syscall, interrupt,
trap, context switch

User
codeUser

codeUser
code

Linux
Kernel

trace
mod

trace buffer in kernel RAM

post-
proc.

Richard Sites 2017.10.27

Goals drive the design

13

Richard Sites 2017.10.27

Goals drive the design, CPU overhead
Less than 1% CPU overhead, about 200,000 transitions per CPU core per second
=> Record to RAM; nothing else is fast enough
=> Each CPU core must write to its own buffer block to avoid cache thrashing

200,000 transitions = one every 5 usec. 1% overhead = 50 nsec budget
50 nsec ~= one cache miss to RAM, so

=> Size of each trace entry must be much less than a cache line; 4 8 and 16 bytes
are the only realistic choices.

Richard Sites 2017.10.27

Goals drive the design, memory overhead
Less than 1% memory overhead, for 30-120 seconds
For a server with 256 GB of main memory, 1% is ~2.5 GB

For N bytes per trace entry and 24 CPU cores and 200K transitions per second,
60 seconds needs

24 * 200K * 60 * N bytes
= 288M * N bytes

=> This implies that N <= 9. I chose four bytes.

Richard Sites 2017.10.27

Goals drive the design, memory overhead
At four bytes each, a trace entry has room for

20-bit timestamp
12-bit event number

 timestamp: cycle counter shifted 6 bits = ~20ns resolution, 20ms wrap
 must guarantee at least one event per 20ms to reconstruct full time -- timer IRQ

 event: ~300 system calls, 300 returns, 300 32-bit system calls, 300 returns,
 12 interrupts, 12 faults, a few others

timestamp event
20 12

Richard Sites 2017.10.27

Goals drive the design -- important embellishment
Ross Biro observed in 2006 that it is particularly useful to have some bits of the
first parameter of any syscall, and to have the matching return value. To do so,
we put call + return into a single 8-byte entry

20-bit timestamp
12-bit event number
8-bit delta-time (call to return)
8-bit retval
16-bit arg0

As a useful side-effect, this makes trace-entry recording substantially faster.
(Occasionally, if delta or retval does not fit in 8 bits, or if some event is inbetween, two entries are used.)

delta retval arg0timestamp event
20 12 8 8 16

Richard Sites 2017.10.27

Goals drive the design
Modest kernel patches to capture each event. apic.c entire patch

 ...
if (dclab_tracing)
(*dclab_global_ops.dclab_trace_1)(DCLAB_TRACE_IRQ + kTimer, 0);

local_apic_timer_interrupt();

if (dclab_tracing)
(*dclab_global_ops.dclab_trace_1)(DCLAB_TRACE_IRQRET + kTimer, 0);

exiting_irq();
set_irq_regs(old_regs);

 ...

18

Richard Sites 2017.10.27

Goals drive the design -- speed even with preemptable kernel

Normal path for making one entry, ~40cy

void trace_1(u64 num, u64 arg) {
 if (!dclab_tracing) {return;}
 Insert1((num << 32) | arg);
}

u64 Insert1(u64 arg1) {
 u64 now = get_cycles();
 u64* claim = GetClaim(1);
 if (claim != NULL) {
 claim[0] = arg1 | ((now >> RDTSC_SHIFT) << 44);
 return 1;
 }
 ...
}

19

u64* GetClaim(int len) {
 tb = &get_cpu_var(dclab_traceblock_per_cpu);
 nexti = atomic64_read(&tb->next);
 limiti = tb->limit;
 if (nexti < limiti) {
 u64* myclaim = (atomic64_add_return(
 len * sizeof(u64), &tb->next)) - len;
 if (myclaim < limiti) {
 put_cpu_var(dclab_traceblock_per_cpu);
 return myclaim;
 }
 }
 ...
}

no
pre-
empt

Richard Sites 2017.10.27

Tracing Design results

20

Richard Sites 2017.10.27

Tracing Design results
==> 50 nsec trace-entry budget

Actual is 4x better:
~12.5 nsec and four bytes per transition

So 25 nsec and 8 bytes per syscall/return or interrupt/return or fault/return pair

1/4 of 1% CPU overhead, 1/4 of 1% RAM overhead for 30-60 seconds of trace

21

Richard Sites 2017.10.27

Tracing Design results, full system
Linux loadable module, reserve kernel ram, patches to look at trace bit, call
module routines.

Routines insert trace items, occasionally allocate new trace blocks

Control interface to start, stop, extract completed trace
User-mode library to optionally insert human-readable markers

Postprocessing to turn transition points into time-span durations
Postprocessing to turn into pictures

22

Richard Sites 2017.10.27

Tracing Design results
Postprocessing 1
 Takes raw binary trace file of transitions and creates time-spans
 Takes time-spans and names embedded in trace (process, syscall, etc.) and
 expands to have name for most spans
 Propagates current CPU#, process id#, RPCID# to every span
 Writes .json file

 System sort of .json file by start times

23

Richard Sites 2017.10.27

Tracing Design results
Postprocessing 2
 Takes small HTML file plus wonderful d3 javascript library plus .json file
 and displays picture of every CPU core every nanosecond

 Users can pan/zoom/label as desired

 Shows all threads processing our slow transaction
 Shows interference from other threads
 Shows not-processing wait time

 Can easily time-align across multiple machines

24

Richard Sites 2017.10.27

Client
machine

Server
machine

Note:
gettimeofday() differs
by 16ms

Postprocessing

Nagle's algorithm delays response by 40 msec

time(sec) C Ev name
28.9995927 0 801 syswrite
28.9996293 0 a01 return, 36.6us
28.9996302 1 0000 -idle-
28.9996333 0 80c sysbrk
28.9996480 1 5d1 eth0
28.9996764 1 5d1 eth0
28.9997007 0 a0c ret brk, 67.4us
28.9997015 0 823 nanosleep
28.9997038 0 0000 -idle-
28.9997504 0 5ef local_timer_vector
28.9997534 0 59a5 bash
28.9997540 0 a23 ret nanosleep 52u
 C: CPU# Ev: event#

Richard Sites 2017.10.27

Display Design

26

Richard Sites 2017.10.27

Display Design
Goal: Turn time-spans into a complete picture of 30-120 seconds of all CPU cores
and what they are doing every nanosecond. Allow pan and zoom.

Result: The .json file file derived from each trace has all the time-spans sorted by
start time. A modest amount of HTML/javascript plus Mike Bostock's excellent
d3.js library provides the mechanism.

But more than ~25,000 spans on screen at once is slow. So the postprocessing
allows combining spans to give a time granularity of 1us to 1ms+, and allows
picking a subset of the trace time. Using these gives full-resolution display
interactions of interest.

27

Richard Sites 2017.10.27

Display Design
Goal: Human-meaningful labels

Result: The .json file file derived from each trace has human-readable names for
all time-spans. These can optionally be displayed for any span or for on-screen
groups of spans.

The raw traces have an initial bunch of entries for the names of every syscall,
interrupt, fault. Whenever a context switch encounters a new process id, the name
of that process is added to the raw trace.

User code may optionally add marker entries to the trace, highlighting areas of
interest.

28

Richard Sites 2017.10.27

hello world example trace (hello, /hello annotation added for talk)

29

Richard Sites 2017.10.27

hello world example trace (hello, /hello annotation added for talk)

30

./hello_world
./hello_world hello world\n $

eth0

sshd

hello

kworker
bash

Richard Sites 2017.10.27

hello world example trace (hello, /hello annotation added for talk)

31

./hello_world
./hello_world hello world\n $

eth0

sshd

hello

kworker
bash

Richard Sites 2017.10.27

hello world example trace, main() 80 usec across

32

eth0

sshd

hello

kworker
bash

sshd

kworker

Richard Sites 2017.10.27

hello world example trace, main() 80 usec across

33

eth0

sshd

hello

kworker
bash

sshd

kworker

No C6 wakeup delay CPU 1 to 3
because they are two hyperthreads of
the same physical core; 3 woke up
back when 1 did

No C6 wakeup delay CPU 1 to 3
because they are two hyperthreads of
the same physical core; 3 woke up
back when 1 did

Richard Sites 2017.10.27

Something you have never

observed before

34

Richard Sites 2017.10.27

IPC, instructions per cycle at nsec scale

Richard Sites 2017.10.27

IPC, instructions per cycle at nsec scale

 ~0.25 IPC ~2 IPC~1 IPC~0.5 IPC

Richard Sites 2017.10.27

IPC, instructions per cycle at nsec scale

After syswrite() call,
user-mode program IPC
slow then increases

 ~0.25 IPC ~2 IPC~1 IPC~0.5 IPC

Richard Sites 2017.10.27

IPC, instructions per cycle at nsec scale

page-fault code gets faster
at reuse

 ~0.25 IPC ~2 IPC~1 IPC~0.5 IPC

Richard Sites 2017.10.27

Direct observation of cross-CPU communication

IPI send to resched
interrupt 1.2 usec,
90ns IRQ execution

sched code 2nd part fastersched code, rcu callback,
sched 2nd part faster

Richard Sites 2017.10.27

Direct observation of cross-thread interference

Top/bot L3 cache sweeps
slow each other down

Top L3 cache sweep + bot L1
cache sweep, no slowdown

Richard Sites 2017.10.27

Display Demo

41

Richard Sites 2017.10.27

Comparisons

42

Richard Sites 2017.10.27

Comparisons
Yet another tracing facility?

All 26 exist: atrace, btrace, ctrace, ... ztrace

But few with the global scope and efficiency to address the datacenter
environment.

For example, strace[6] has a tracing overhead of about 350x KUtrace
Even tcpdump's [10] best-case CPU overhead of about 7% makes it too slow for
the datacenter environment

43

Richard Sites 2017.10.27

Tool All
programs

System
calls

Interrupts
& traps

Scripts,
or ASCII

getuid()
trace ovhd

Time
overhead

Space
overhead

KUtrace ✔ ✔ ✔ 25ns 1x 1x

G.ktrace[14] ✔ ✔ ✔ 200ns 8x 12x

dtrace[1] ✔ ✔ ✘ 30x

ftrace[2] ✔ ✔ ✔ ✘ 587ns

ktrace[3] ✔ ✔

ltrace[4] ✔ ✘

LTTng[5] ✔ ✔ ✔ 449ns 16x 8x

strace[6] ✔ ✘ 350x

straceNT[7] ✔ ✔

SystemTap[8] ✔ ✔ ✘

truss[9] ✔ ✘

Richard Sites 2017.10.27

Comparison notes
An earlier version of KUtrace was built at Google circa 2006 by Ross Biro and the
author. David Sharp took over that work and created the second more
easily-maintained but slower version. It is in the table above as G.ktrace, and
under the name ktrace in [12] and [14], not to be confused with the FreeBSD
ktrace[3]. Sharp gives some competitive performance numbers in [13].

Trace systems with scripts or ASCII output have high tracing overhead, so can't
be used on live datacenter traffic.

Some facilities compensate for high tracing overhead by selectively disabling of
trace points, but that destroys the ability to observe interference mechanisms.

45

Richard Sites 2017.10.27

Conclusions

46

Richard Sites 2017.10.27

Conclusions
There is a need for something like KUtrace in datacenters

Kernel-user transitions are a good cutpoint: not too much, not too little data

Careful engineering is necessary to make tracing fast/small

A little extra information, especially human-meaningful names, is important/cheap

Having a good display mechanism makes traces useful

47

Richard Sites 2017.10.27

References
[1] dtrace https://github.com/dtrace4linux/linux

[2] ftrace https://www.kernel.org/doc/Documentation/trace/ftrace.txt

[3] ktrace https://www.freebsd.org/cgi/man.cgi?ktrace(1)

[4] ltrace https://ltrace.org/

[5] LTTng http://lttng.org/

[6] strace http://man7.org/linux/man-pages/man1/strace.1.html

[7] straceNT https://github.com/intellectualheaven/stracent

[8] SystemTap https://sourceware.org/systemtap/

[9] truss https://en.wikipedia.org/wiki/Truss_(Unix)

[10] tcpdump http://www.tcpdump.org/tcpdump_man.html

48

https://github.com/dtrace4linux/linux
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.freebsd.org/cgi/man.cgi?ktrace(1)
https://ltrace.org/
http://lttng.org/
http://man7.org/linux/man-pages/man1/strace.1.html
https://github.com/intellectualheaven/stracent
https://sourceware.org/systemtap/
https://en.wikipedia.org/wiki/Truss_(Unix)
http://www.tcpdump.org/tcpdump_man.html

Richard Sites 2017.10.27

References
[11] John Nagle, Congestion Control in IP/TCP Internetworks. https://tools.ietf.org/html/rfc896

[12] Martin Bligh, Mathieu Desnoyers, Rebecca Schultz, Linux Kernel Debugging on Google-size clusters.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.4088&rep=rep1&type=pdf 2007

[13] David Sharp, Benchmarks of kernel tracing options (ftrace, ktrace, lttng and
perf).https://groups.google.com/forum/print/msg/linux.kernel/wA5wM2iIUus/POoOtRU47yEJ?ctz=3598665
_24_24__24_ 2010, also https://lkml.org/lkml/2010/10/28/261

[14] Jonathan Corbet about David Sharp, KS2011: Tracing for large-scale data centers.
https://lwn.net/Articles/464268/ 2011

[15] Dan Ardelean, Amer Diwan, Rick Hank, Christian Kurmann, Balaji Raghavan, Matt Seegmiller, Life
lessons and datacenter performance analysis. ISPASS 2014: 147
http://ispass.org/ispass2014/slides/AmerDiwan.pdf 2014

49

https://tools.ietf.org/html/rfc896
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.4088&rep=rep1&type=pdf
https://groups.google.com/forum/print/msg/linux.kernel/wA5wM2iIUus/POoOtRU47yEJ?ctz=3598665_24_24__24_
https://groups.google.com/forum/print/msg/linux.kernel/wA5wM2iIUus/POoOtRU47yEJ?ctz=3598665_24_24__24_
https://lkml.org/lkml/2010/10/28/261
https://lwn.net/Articles/464268/
http://dblp.uni-trier.de/db/conf/ispass/ispass2014.html#Diwan14
http://ispass.org/ispass2014/slides/AmerDiwan.pdf

Richard Sites 2017.10.27

Additional References
Dapper, a Large-Scale Distributed Systems Tracing Infrastructure, Benjamin H. Sigelman, et. al., 2010
https://research.google.com/pubs/pub36356.html

Reduce tracing payload size, David Sharp <dhsharp@google.com>, 2010

https://lwn.net/Articles/418709/

M Bligh, M Desnoyers, R Schultz , Linux Kernel Debugging on Google-sized clusters, Linux Symposium,
2007 https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=29

Luiz André Barroso and Urs Hölzle , The Datacenter as a Computer An Introduction to the Design of
Warehouse-Scale Machines, 2nd Edition 2013.
http://www.morganclaypool.com/doi/pdf/10.2200/S00516ED2V01Y201306CAC024

50

https://research.google.com/pubs/pub36356.html
mailto:dhsharp@google.com
https://lwn.net/Articles/418709/
https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=29
http://www.morganclaypool.com/doi/pdf/10.2200/S00516ED2V01Y201306CAC024

Richard Sites 2017.10.27

Questions?

Enjoy.

51

Richard Sites 2017.10.27 52

