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Motivations

● Challenges: root cause analysis of web 
applications performance problems
– Several components and layers are involved

● Web server problem?
● Code problem?
● Bad database design? No table indexes?
● System resource limitation?

– Various debugging tools
– Unified way to analyse them

– Trace-based approach
– LAMP stack

● MEAN stack
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Userspace tracing

● You can trace your application
– tracepoints 

● LTTng-UST
● FTrace
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1- Apache

● Apache LTTng module: 
– Hooks LTTng probes into the Apache web server.

– These probes extract runtime information about the web 
requests and the apache itself

● Web requests

● Apache internals
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Web Requests Tracing
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Apache Modules Tracing
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2- PHP

● LTTng probes in PHP

– Provide detailed information about the PHP requests

● Monitor the entire PHP script execution: 

– 13 tracepoints
● Start/close a request
● Function calls
● Line executions
● db connections
● errors/exceptions
● New PHP function: trace_print

– arguments
● request info, function name, file name, class name, line number, etc.

● Trace Compass views:

– CallStack, Flame Graph, Request lists/response time distribution
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Tracepoints



      
9

LTTng PHP exetnsion 
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Example
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Example (cntd)
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3- MySQL/MariaDB

● LTTng probes in MySQL/MariaDB
– Provide information about query executions
– 60 tracepoints in 200 different locations

● We hook to the existing probes.

– Monitor the full query execution process
● DB connections

● Query execution

– Query type (select, update, insert, etc.)

– Query parsing

– Row-level operations in storage engines

– Table R/W locks

– File sorts

● Cache miss, hit
● Network I/O
● More information in the arguments

– Connection ID, DB name, user, host, etc
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Installtion

./configure --enable-lttng

cmake .

make

sudo make install
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Example

Select * from dbtable1;
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Example 2
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hit

miss
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4- LAMP stack analysis
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Flame chart 
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Performance

● ab -c [5-100] -n 5000 http://132.207.72.37/drupal

● 28000 lines of code

http://132.207.72.37/drupal
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Performance (the worst case)

● ab -c [5-100] -n 1000 http://32.207.72.37/test/bench.php

● 65,000,000 lines of code
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Usecase: PHP Compile prblem

● Multilevel lamp stack view
– PHP compile problem

● Apache modules
● PHP compile time
● Mysql overhead view
● VM ovearhead view 
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Trace Compass Updates

● Incubator
● Multilevel Flame charts
● Multilevel Flame graphs
● VM overhead view
● Critical path using Perf events.
● Counters Analysis
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Trace Compass Incubator

● The features that are under development, but still 
usable enough to be used and tested by users.

● Whose content relates to a specific trace type or 
domain of analysis (for example virtual machine 
analyses) and that no other plugin will depend on.

● The features will never be officially released with 
a specific version

● Some feature may eventually graduate to the 
Trace Compass project itself if required
– https://wiki.eclipse.org/Trace_Compass/Contributor_Guidelines



      
24

Trace Compass Counters Analysis



Use-case:

PHP OPCACHE 

Performance Analysis
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                  Response Time of a Web 
Application

What happens?

There are periodic slow-downs. What happens 
there?!



      
27

PHP Request Anatomy

● PHP Is a  scripting language
– compiles any file you ask it to run, obtain 

OPCodes from compilation, run them, and trash 
them away immediately.

● Parse, compile, execute, forget

Parse, compile, execute, forget

Parse, compile, execute, forget

...

PHP "forgets" everything it's done in request 
N-1, when it comes to run request N.
– Even if it calls the same scripts

several times.
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PHP Request Anatomy (2)

● Which one is the 
longest?
– It depends!

– Let's see what 
trace data gives us.
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Compile Time Analysis

request time:592 us

compile time: 27.4 us

13.3 us 11.2 us 9.7 us

213 us

  1 <?php /*main4.php*/
  2 
  3 $x = rand(0,1000);
  4 
  5 echo $x.PHP_EOL;
  6 $xy = 123;
  7 include 'folder1/'.$xy.'.php';
  8 include 'folder2/'.$xy.'.php';
  9 include 'folder3/'.$xy.'.php';
 10 
 11 echo $x.PHP_EOL;
 12 ?>
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Compile Time: UST Events

Compilation time: 60us ( ~ 10 % of 
the request time)

But, let's go deeper!

request time:592 us

compile time: 27.4 us

13.3 us 11.2 us 9.7 us

213 us

  1 <?php /*main4.php*/
  2 
  3 $x = rand(0,1000);
  4 
  5 echo $x.PHP_EOL;
  6 $xy = 123;
  7 include 'folder1/'.$xy.'.php';
  8 include 'folder2/'.$xy.'.php';
  9 include 'folder3/'.$xy.'.php';
 10 
 11 echo $x.PHP_EOL;
 12 ?>
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Kernel + UST Events

Now looks much more!

Parse, Compile, Optimize (55us) Execute(5.2us)  

request time:592 us
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Solution: Opcode Cache 
(Opcache)

   Cache at first run Load from cache after
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Solution: Opcode Cache 
(Opcache)

Loads from cache

 
Resoponse time:
592 us --> 73 us (with caching)
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Compile Time: Drupal

time

%
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Compile Time: WordPress
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Compile Time: MediaWiki

%

time
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                           Response Time

What happens?

Let's back to our example
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Critical Flow

Every PHP process that is willing to write into shared memory will lock 
every other process willing to write into shared memory as well.
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Critical Flow
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Resources

Modules to install:

   https://github.com/naser 

Traces and XML files:

   https://github.com/naser/tracingsumit2017

Trace Compass:

   http://tracecompass.org

LTTng:

   http://lttng.org/

                                                            Thank you

                                                           n.ezzati@polymtl.ca

  

https://github.com/naser
https://github.com/naser/tracingsumit2017
http://tracecompass.org/
http://lttng.org/
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Other Slides

● Python Analysis
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