

1

Shed Lights into Your
Web Applications

Naser Ezzati
 Polytechnique Montreal

Tracing Summit 2017
Prague, Czech

2

Motivations

● Challenges: root cause analysis of web
applications performance problems
– Several components and layers are involved

● Web server problem?
● Code problem?
● Bad database design? No table indexes?
● System resource limitation?

– Various debugging tools
– Unified way to analyse them

– Trace-based approach
– LAMP stack

● MEAN stack

3

Userspace tracing

● You can trace your application
– tracepoints

● LTTng-UST
● FTrace

tp

tp tp

tp

4

1- Apache

● Apache LTTng module:
– Hooks LTTng probes into the Apache web server.

– These probes extract runtime information about the web
requests and the apache itself

● Web requests

● Apache internals

Apache
CoreApache

Module
Apache
Module

Apache
Module

Apache
Module

Apache
Module

2

2

2

2

2

1

5

Web Requests Tracing

6

Apache Modules Tracing

7

2- PHP

● LTTng probes in PHP

– Provide detailed information about the PHP requests

● Monitor the entire PHP script execution:

– 13 tracepoints
● Start/close a request
● Function calls
● Line executions
● db connections
● errors/exceptions
● New PHP function: trace_print

– arguments
● request info, function name, file name, class name, line number, etc.

● Trace Compass views:

– CallStack, Flame Graph, Request lists/response time distribution

8

Tracepoints

9

LTTng PHP exetnsion

10

Example

11

Example (cntd)

12

3- MySQL/MariaDB

● LTTng probes in MySQL/MariaDB
– Provide information about query executions
– 60 tracepoints in 200 different locations

● We hook to the existing probes.

– Monitor the full query execution process
● DB connections

● Query execution

– Query type (select, update, insert, etc.)

– Query parsing

– Row-level operations in storage engines

– Table R/W locks

– File sorts

● Cache miss, hit
● Network I/O
● More information in the arguments

– Connection ID, DB name, user, host, etc

13

Installtion

./configure --enable-lttng

cmake .

make

sudo make install

14

Example

Select * from dbtable1;

15

Example 2

16

hit

miss

17

4- LAMP stack analysis

18

Flame chart

19

Performance

● ab -c [5-100] -n 5000 http://132.207.72.37/drupal

● 28000 lines of code

http://132.207.72.37/drupal

20

Performance (the worst case)

● ab -c [5-100] -n 1000 http://32.207.72.37/test/bench.php

● 65,000,000 lines of code

21

Usecase: PHP Compile prblem

● Multilevel lamp stack view
– PHP compile problem

● Apache modules
● PHP compile time
● Mysql overhead view
● VM ovearhead view

22

Trace Compass Updates

● Incubator
● Multilevel Flame charts
● Multilevel Flame graphs
● VM overhead view
● Critical path using Perf events.
● Counters Analysis

23

Trace Compass Incubator

● The features that are under development, but still
usable enough to be used and tested by users.

● Whose content relates to a specific trace type or
domain of analysis (for example virtual machine
analyses) and that no other plugin will depend on.

● The features will never be officially released with
a specific version

● Some feature may eventually graduate to the
Trace Compass project itself if required
– https://wiki.eclipse.org/Trace_Compass/Contributor_Guidelines

24

Trace Compass Counters Analysis

Use-case:

PHP OPCACHE

Performance Analysis

26

 Response Time of a Web
Application

What happens?

There are periodic slow-downs. What happens
there?!

27

PHP Request Anatomy

● PHP Is a scripting language
– compiles any file you ask it to run, obtain

OPCodes from compilation, run them, and trash
them away immediately.

● Parse, compile, execute, forget

Parse, compile, execute, forget

Parse, compile, execute, forget

...

PHP "forgets" everything it's done in request
N-1, when it comes to run request N.
– Even if it calls the same scripts

several times.

28

PHP Request Anatomy (2)

● Which one is the
longest?
– It depends!

– Let's see what
trace data gives us.

29

Compile Time Analysis

request time:592 us

compile time: 27.4 us

13.3 us 11.2 us 9.7 us

213 us

 1 <?php /*main4.php*/
 2
 3 $x = rand(0,1000);
 4
 5 echo $x.PHP_EOL;
 6 $xy = 123;
 7 include 'folder1/'.$xy.'.php';
 8 include 'folder2/'.$xy.'.php';
 9 include 'folder3/'.$xy.'.php';
 10
 11 echo $x.PHP_EOL;
 12 ?>

30

Compile Time: UST Events

Compilation time: 60us (~ 10 % of
the request time)

But, let's go deeper!

request time:592 us

compile time: 27.4 us

13.3 us 11.2 us 9.7 us

213 us

 1 <?php /*main4.php*/
 2
 3 $x = rand(0,1000);
 4
 5 echo $x.PHP_EOL;
 6 $xy = 123;
 7 include 'folder1/'.$xy.'.php';
 8 include 'folder2/'.$xy.'.php';
 9 include 'folder3/'.$xy.'.php';
 10
 11 echo $x.PHP_EOL;
 12 ?>

31

Kernel + UST Events

Now looks much more!

Parse, Compile, Optimize (55us) Execute(5.2us)

request time:592 us

32

Solution: Opcode Cache
(Opcache)

 Cache at first run Load from cache after

33

Solution: Opcode Cache
(Opcache)

Loads from cache

Resoponse time:
592 us --> 73 us (with caching)

34

Compile Time: Drupal

time

%

35

Compile Time: WordPress

36

Compile Time: MediaWiki

%

time

37

 Response Time

What happens?

Let's back to our example

38

1

3

2

39

Critical Flow

Every PHP process that is willing to write into shared memory will lock
every other process willing to write into shared memory as well.

40

Critical Flow

41

Resources

Modules to install:

 https://github.com/naser

Traces and XML files:

 https://github.com/naser/tracingsumit2017

Trace Compass:

 http://tracecompass.org

LTTng:

 http://lttng.org/

 Thank you

 n.ezzati@polymtl.ca

https://github.com/naser
https://github.com/naser/tracingsumit2017
http://tracecompass.org/
http://lttng.org/

42

Other Slides

● Python Analysis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

