
Are your interfaces used as 
expected?
Runtime Data Analysis

with EB solys

Torsten Mosis, Software Architect, systemticks GmbH

October 25th, 2018, Edinburgh

Tracing Summit © systemticks 2018



About me

● Co-founder of systemticks (October 2018)

● Product owner of EB solys at Elektrobit Automotive (subsidiary of 

Continental)

● Software architect at Harman International

● Software developer Siemens VDO

© systemticks 2018



Agenda

© systemticks 2018

● Motivation

○ Increasing complexity in software systems

○ Difficulties in defect location and trouble shooting

● EB solys

○ Architecture & eco system

○ Download

○ Methodology

○ Customization & Extension

● Demo



Motivation



Architecture in future software projects

Current market trends show that software systems in domains such as automotive, IoT or 

Industry 4.0 are moving into the direction of service-oriented architecture on distributed 

systems over multiple control units and devices. 

© systemticks 2018



… leads to an increasing complexity

● Different companies and responsibilities

● Different skill and knowledge level

● Multiple countries, time-zones and cultures

● Various set of tools and methodologies

© systemticks 2018

● Number of interacting software components, 

nodes and partitions

● Usage of remote services in the cloud

● Deployment on multiple devices

● Multiple co-existing programming languages, 

frameworks, protocols and operating systems

Technical Complexity Organizational Complexity



… with inevitable integration issues

© systemticks 2018

Component A

Component B

What happens:

Although all components have been tested carefully 

(possibly test-driven) the software runs into trouble when 

constructing the single components into a larger system.

Typical errors:

• Calls in the wrong order/sequence

• Pre-conditions were not fulfilled

• Post-conditions were not fulfilled

• Calls with wrong range of values

• Call causes performance drawback

• Service called by not-authorized client

• …



… and to expensive actions

This is expensive and frustrating.

© systemticks 2018

Errors and shortcomings in such complex systems become difficult to isolate, since the 

features are implemented in a distributed manner, by cross-cutting multiple layers, services 

nodes and technologies by different parties and suppliers.

Solving those errors usually leads to finger pointing and actions like ramping-up a huge 

testing infrastructure and personnel, when lacking 

● a shared system understanding 

● common analysis methodologies

● a consistent tooling



… requires a consistent analysis solution

composed of two interconnected approaches:

1. applying methodologies and techniques to your system, to make it traceable and 

analyzable

2. developing an efficient toolchain with the focus on gathering valuable runtime data from 

different sources and setting them in relation to each other.

This enables you creating a joint system understanding and isolating errors with significant 

less workforce and gains a greater insight into its operational activity.

© systemticks 2018



EB solys



EB solys architecture

Script 

Engine

Target Data Management

Decoder

GUI

Communicator Importer

EB solys target agent

EB solys

CLI

live analysis post-mortemanalysis

Data Collection

Data Preparation

Data Visualization



EB solys on GitHub

Script 

Engine

Target Data Management

Decoder

GUI

Communicator Importer

EB solys target agent

EB solys

CLI

live analysis post-mortemanalysis

https://github.com/Elektrobit/eb-solys

https://github.com/Elektrobit/eb-solys-target-agent

https://github.com/Elektrobit/eb-solys-android-agent



EB solys customization & extension points

Script 

Engine

Target Data Management

Decoder

GUI

Communicator Importer

EB solys target agent

EB solys

CLI

live analysis post-mortemanalysis

Provide your own Importer for any kind of logs, which are 

not created originally by the target agent

Hook in your own Decoder, that transforms arbitrary non-

primitive data (e.g. binary payload) into structured readable 

text

Use the Built-in Script Engine to add new functionality by 

accessing the EB solys raw data and resources

Implement your own Target Agent Plug-In, that retrieves 

project/system specific data



Capturing the communication flow of your system, like 

monitoring 

● remote procedure calls

● messages

● events

● broadcasts

● etc.

tells you how your components interact with each other, thus 

reveals its dynamic behavior and your interface design.

Monitoring communication flow

© systemticks 2018



Structured application logging

Applying structured logging methodologies, like

● using a consistent, predetermined and machine-

readable message format

● utilizing model-driven approaches

● collecting semantics information

● determine appropriate log levels for certain use-cases

● tracing cross-cutting features

allows tracing-back crucial use-cases, such as startup, 

shutdown, essential service calls or other high-level 

functionality.

© systemticks 2018



Capturing resource data

Acquiring data on system level, such as

● CPU load

● memory consumption

● file I/O

● network I/O

● etc.

let you draw conclusions from your non-functional aspects

of your software, such as workload, balance and 

throughput.

© systemticks 2018



On top of the data storage we provide a 
powerful API for the purposes of:

● filtering
● searching
● aggregating
● decoding
● correlating 
● transforming
● automating

across different data sources in a single 
place.

Data formatting and preparation

© systemticks 2018



Demo



Understanding 

Software Systems

Get in touch

www.systemticks.de

hello@systemticks.de


