
Perfetto

Tracing Summit 2018 - Edinburgh

primiano@google.com

Platform-wide performance instrumentation and tracing
for Android and Chrome



What is Perfetto about?
1. Record traces

Tracing library & daemons

2. Analyze traces

Perfetto trace processor

3. Visualize traces

Perfetto UI

on-device

offline



What is Perfetto about?
1. An open source (AOSP / Apache2 license) project for recording, 

processing and visualizing traces.

2. A production C++11 codebase for secure and efficient (zero-copy*, 
zero-malloc*) userspace-to-userspace tracing.

3. Integration with ftrace, /proc/{stat,vmstat,pid/*} and soon 
perf_event_open.

4. A SQLite-based codebase for analyzing and processing traces.

5. A UI frontend.

* Some copies / allocations are involved, once every ~4KB.



Perfetto UI
Visualize all the things

Perfetto tracing service
Producer endpoint

Consumer endpoint

Platform probes services

Linux ftrace /proc/… 
interfaces

Heap profiler

Coming soon!

Protobuf-based
trace

Protobuf-based
config

Shared memoryShared memory

Any app / process

$_

Perfetto trace processor
Ingest traces and expose as SQLite vtables



Where to find the code?
Android AOSP

source of truth

//external/perfetto

Github
catapult-project/perfetto

Chromium
//third_party/perfetto

Mirrors

https://android.googlesource.com/platform/external/perfetto/
https://github.com/catapult-project/perfetto
https://cs.chromium.org/chromium/src/third_party/perfetto/?q=perfetto&sq=package:chromium&dr


On-device

What is Perfetto about?

Linux ftrace Linux /proc/ interfaces
/proc/stat, /proc/pid/stat*

perf_event_open
Coming soon

Perfetto traced_probes
privileged access to kernel interfaces

Perfetto traced
userspace tracing daemon

Perfetto trace processor
Ingest traces and expose as SQLite vtables

Perfetto UI
Visualize all the things

Arbitrary 
userspace 
processes



Userspace
tracing
library



Key concepts

Tracing serviceProducers Consumer(s)

● The thing that owns the log 
buffers (there is one* buffer 
for the all system / browser)

● Acts as registry and handles 
handshakes between 
producers and consumer(s)

● In chrome: a /services service

● In android: a system service 
(traced)

● The thing that writes protobufs 
into the trace buffers

● Untrusted. Potentially 
malicious. Everything can be a 
Perfetto producer.

● On startup advertises its 
capabilities to the tracing 
service.

● At some point the tracing 
service asks it to start 
collecting data

● The thing that configures all 
the tracing session and 
decides who should trace and 
what.

● Is allowed to configure the 
tracing service and read back 
the trace data

● Trusted / privileged

● In chrome: the thing that 
exposes data to the UI

● In android: shell (for the UI) and 
Android Metrics services



Tracing service

Trace Buffers
Pr

od
uc

er
 e

nd
po

in
t

C
on

su
m

er
 e

nd
po

in
t

Trace 
processo
r

Sawmill

User 
interface

Tracing Service



Tracing service

Trace Buffers

Pr
od

uc
er

 e
nd

po
in

tProducer 1
Data source: linux.ftrace

Data source: ...

Producer 2
Data source: chromium.evt

Data source: ...

C
on

su
m

er
 e

nd
po

in
t

Shared 
memory

Shared 
memory

IPC channel

IPC channel

Any user-space 
process

Platform probes 
services

Kernel 
ftrace I/O tracing

Perf 
profiling

Heap 
profiling

Protozero:
zero-copy protobuf

Producers



Shmem buffer format
Per-process shared memory buffer

Page

. . .

page_state (atomic word)

proto_content_length

protobuf encoded payload 
containing trace data



Tracing service

Pr
od

uc
er

 e
nd

po
in

t

C
on

su
m

er
 e

nd
po

in
t Consumer 

Trace config
IPC

IPC 

Kernel 
ftrace

Perf 
profiling

Trace
processor

Consumer 
Trace config

User
Interface

Consumers



Trace config



What is a trace?

...

...

A trace can be large (10 GB)



Trace Processor



Trace processor
C++11 + SQLite codebase

Ingests traces of various formats (for now our .proto and Chrome's JSON, 
in future also ftrace text)

Builds an in-memory columnar database from trace contents.

Exposes the storage to SQLite through vtable hooks

Adds some trace-specific constructs on top of conventional SQLite ones. 



.proto trace

legacy trace 
formats

Trace 
Processor

Processed trace in columnar storage

Userspace 
slices

Start
Duration
Thread ID
Event name
Depth

Thread map Thread ID
Thd name

Process map Process ID
Proc name

SQLite Virtual Tables

trace_processor_shell ui.perfetto.dev

Handles:
● Event sorting
● Data massaging
● Clock syncing
● String interning

Docs on www.perfetto.dev
See /docs/trace-processor.md

Sched slices
Start
Duration
Thread ID
CPU

$_

Trace processor

http://www.perfetto.dev
https://android.googlesource.com/platform/external/perfetto/+/master/docs/trace-processor.md




New constructs
Windowing Event 1 Event 2 Event 3 Event 4 Event 5 Event 6

Window

Event 1 Event 2 Event 3 Event 4

CREATE VIRTUAL TABLE bounds USING window;
UPDATE bounds SET window_start=X, window_dur=Y where 1
CREATE VIRTUAL TABLE clipped USING span(sched, bounds)

Orig table Clip mask



New constructs
Quantization Event 1 Event 2 Event 3 Event 4 Event 5 Event 6

Quantum

Event 1 E2 Event 3 E4

CREATE VIRTUAL TABLE bounds USING window;
UPDATE bounds SET quantum=Z where 1
CREATE VIRTUAL TABLE quantized USING span(sched, bounds)

Quantum Quantum Quantum

E2 Event 4 Event5 E5 Event6

...

...



New constructs
Harmonization Event 1 Event 2 Event 3 Event 4 Event 5 Event 6

Counter A

CREATE VIRTUAL TABLE quantized USING span(sched, counters, cpu)

Counter B

E1

CA

E2

CA

E4

CB

E5

CB

Join key



UI



Perfetto UI
Re-written from scratch from the ashes of chrome://tracing

Web-based: TypeScript + WebAssembly running in a worker

All the processing / analysis engine is based on the Trace Processor

Supports ~5 GB traces (limited by browser renderer limit)

URL: https://ui.perfetto.dev

Or just build it from sources and run locally.

https://ui.perfetto.dev


UP TO DATE UI SCREENSHOT HERE



Thanks for your attention

For docs / links:

www.perfetto.dev

primiano@google.com

http://www.perfetto.dev

