Perfetto

Platform-wide performance instrumentation and tracing
for Android and Chrome

Tracing Summit 2018 - Edinburgh

primiano@google.com

What is Perfetto about?

1. Record traces .
- on-device

Tracing library & daemons

2. Analyze traces

Perfetto trace processor

offline -

3. Visualize traces
Perfetto Ul

What is Perfetto about?

1. Anopen source (AOSP / Apache2 license) project for recording,
processing and visualizing traces.

2. A production C++11 codebase for secure and efficient (zero-copy*,
zero-malloc*) userspace-to-userspace tracing.

3. Integration with ftrace, /proc/{stat,vmstat,pid/*} and soon
perf_event_open.

4. A SQLite-based codebase for analyzing and processing traces.

5. AUl frontend.

* Some copies / allocations are involved, once every ~4KB.

a Heap profiler
$ I - Linux ftrace /proc/... PP
_ g interfaces Coming soon!
Any app / process Platform probes services

\/

Shared memory Shared memory
I |
1]
Producer endpoint
Perfetto tracing service

Consumer endpoint
A

Protobuf-based Protobuf-based
config trace

Perfetto Ul Perfetto trace processor
Visualize all the things Ingest traces and expose as SQLite vtables

Where to find the code?

Android AOSP

source of truth

//external/perfetto

Mirrors

Chromium Github
//third party/perfetto catapult-project/perfetto

https://android.googlesource.com/platform/external/perfetto/
https://github.com/catapult-project/perfetto
https://cs.chromium.org/chromium/src/third_party/perfetto/?q=perfetto&sq=package:chromium&dr

What is Perfetto about?

perf_event_open
Coming soon

Arbitrary ——— —
userspace
processes Perfetto traced

userspace tracing daemon Cr-clEviee

. — e :

Perfetto trace processor Perfetto Ul

Ingest traces and expose as SQLite vtables Visualize all the things

Userspace
tracing
library

Key concepts

Producers

The thing that writes protobufs
into the trace buffers

Untrusted. Potentially
malicious. Everything can be a
Perfetto producer.

On startup advertises its
capabilities to the tracing
service.

At some point the tracing
service asks it to start
collecting data

Tracing service

The thing that owns the log
buffers (there is one* buffer
for the all system / browser)

Acts as registry and handles
handshakes between
producers and consumer(s)

In chrome: a /services service

In android: a system service
(traced)

Consumer(s)

The thing that configures all
the tracing session and
decides who should trace and
what.

Is allowed to configure the
tracing service and read back
the trace data

Trusted / privileged

In chrome: the thing that
exposes data to the Ul

In android: shell (for the Ul) and
Android Metrics services

Tracing Service

Tracing service

»ENNEEE»

Trace Buffers

>EEEE »

Producer endpoint
Consumer endpoint

N Producers

Kernel
ftrace \ l |/0O tracing

Producer 1

Data source: linux.ftrace Shared

» memory »
Data source:

Tracing service

Platform probes
services

411111

Trace Buffers

Producer 2 Rtz 2 >ENEE

Data source: chromium.evt Shared
» memory »
Data source: . ..

Protozero:
zero-copy protobuf

Producer endpoint

€ H »

Any user-space
process

Shmem buffer format

Per-process shared memory buffer

\

page state (atomic word)

proto_content_length

protobuf encoded payload
containing trace data

Producer endpoint

Tracing service

»EEREEE»

Trace Buffers

>EEEE »

Consumer endpoint

Consumers

=)

Consumer q

—EE—- @

User
Interface

Tracing service Trace config Trace Config

Trace buffer 1, size: 4 MB

Producer 1

u - ~ 2 ~
android.sustemu
|

‘Data source: kernel ftrace ftrace config

Data source: 1/0 'traciq@, |/O config

Producer 2

'.'_7'.‘1’1--': hromium.browser_erocess

Data source: Chrome tracing. Chrome config

Data source: Chrome heap profiler Hprof config

What is a trace?

A sequence of TracePacket(s)
protobuf messages

TracePacket

TracePacket

TracePacket

FtraceEventBundle

ProcessTree

InodeFileMap

UserspaceEventTags

—

SchedSwitch

CpuFrequency

Ext4 R/W

A trace can be large (10 GB)

Trace Processor

Trace processor

C++11 + SQLite codebase

Ingests traces of various formats (for now our .proto and Chrome's JSON,
in future also ftrace text)

Builds an in-memory columnar database from trace contents.
Exposes the storage to SQLite through vtable hooks

Adds some trace-specific constructs on top of conventional SQLite ones.

Trace processor

Processed trace in columnar storage

| Start (BN I Y By Dy
| . Duraton EHIUETEHEH H "N !
| Schedslices 5 i mrm - m m m o m| |
! CPU ETE E EEE
.proto trace i - —
Trace : Duration MU MU MO WO WL WD !
. Userspace ;
:’“"""“"""“""j Processor : I. ThreadlD :
. legacy trace | ! slices Eventname M~ W W W W W ||
E _______ -f_o_r_rng:t_s_______j i Depth [| [| [| [| [| [| i
Handles: l ThreadD MO WO WO WO WD WY |
e Eventsorting : Thread map Thdname EEUEUETETHTEE|
e Datamassaging !
. . P D EEIEIEIET |
e Clocksyncing . Process map P:gzensasme I Il o 1 Y i
e Stringinterning : !
Docs on www.perfetto.dev ¥

See /docs/trace-processor.md .

trace _processor_shell ui.perfetto.dev

http://www.perfetto.dev
https://android.googlesource.com/platform/external/perfetto/+/master/docs/trace-processor.md

$ out/mac_release/trace_processor_shell ~/Downloads/1gb-trace-truncated.proto

trace_processor_shell.cc Trace loaded: 1048.58 MB (184.9 MB/s)

> select proc_name, cpu, cpu_sec from (select process.name as proc_name, upid, cpu, cpu_sec from (select cpu, utid, sum(

dur)/1e9 as cpu_sec from sched group by utid) left join thread using(utid) left join process using(upid)) group by upid,
cpu order by cpu_sec desc limit 100

proc_name cpu cpu_sec
migration/2 2 2532.212882
migration/3 3 2529.064936
migration/1 1 2527.338100
migration/4 4 2526.877703
migration/5 5 2524.508852
migration/6 6 2523.372052
migration/7 7 2522.564051
/system/bin/surfacef 3 22.770180
rcu_preempt 7 16257903
irq/760-synapti 4 14.566679
smem_native_rpm 7 11.273782
kswapdO 3 10.327598
ksoftirqd/0 0 10.231438
kworker/u16:2 7 9.276288
migration/0 0 8.302623
/vendor/bin/msm_irgb 3 8.256403
kworker/u16:4 7 7.876912
rcuop/0 7 6.730403
rcuos/0 7 6.469543
sugov:0 3 6.113958
/vendor/bin/hw/andro 3 5r9i19216

Windowing

CREATE VIRTUAL TABLE bounds USING window;

New constructs

| 1
: Event 1 Event2 | Event3 Event 4 : Event 5 Event 6
Window
| [] |
|] |
Event 1 Event2 | Event3 Event 4

UPDATE bounds SET window_start=X, window_dur=Y where 1
CREATE VIRTUAL TABLE clipped USING span(sched, bounds)

Orig table Clip mask

New constructs
Quantization | gens cvees [Everta]|

Quantum Quantum Quantum Quantum

| |
| |
fent1 8] &2 B2

CREATE VIRTUAL TABLE bounds USING window;
UPDATE bounds SET quantum=Z where 1
CREATE VIRTUAL TABLE quantized USING span(sched, bounds)

New constructs
Harmonization [g1 cvencs [EveRa]

I
Cour}ter B

I
Cour}ter A

|

1

|

1

I

{ E1 E4
I cAa | ca

CB | CB
CREATE VIRTUAL TABLE quantized USING span(sched, counters, cpu)
l

Join key

Ul

Perfetto Ul

Re-written from scratch from the ashes of chrome://tracing
Web-based: TypeScript + WebAssembly running in a worker
All the processing / analysis engine is based on the Trace Processor

Supports ~5 GB traces (limited by browser renderer limit)

URL: https://ui.perfetto.dev
Or just build it from sources and run locally.

https://ui.perfetto.dev

(™ Perfetto

Tracks
Traces 3
[Open trace file
B Open example trace
.> Record new trace 7.96 ‘ ¢ ‘ 5 7.9¢ 6)7.96 v 35 y é 457.9¢
\
-(: Share current trace Cpu Track 1
Workspaces Cpu Track2
Tracks and views Cpu Track 3
Addr
P: /system/bin/traced_pfobes [896]
T: traced_probes [896]
Metrics and auditors P Tracicd ‘ I “. |.
Add n) th e ‘
Cpu Track 5 R D0 (o A A A A A A R OO VIR 111N (AR
Cpu Track 6
Cpu Track 7
Cpu Track 8

Flame Graph

Thanks for your attention

For docs / links:

www.perfetto.dev

primiano@google.com

http://www.perfetto.dev

