
 Writing Babeltrace 2 plugins

Tracing summit 2019 (20 August 2019)
Simon Marchi <simon.marchi@efficios.com>

simark on GitHub/IRC/SO

2/26Simon Marchi <simon.marchi@efficios.com>

Questions?
Note slide number and

ask at the end.

Contents
1) Babeltrace 2, reminder and update
2) Important concepts
3) Let’s write some components
4) Next steps
5) Questions

3/26Simon Marchi <simon.marchi@efficios.com>

Babeltrace 2, reminder and status

4/26Simon Marchi <simon.marchi@efficios.com>

Babeltrace 2, a reminder

● Process, analyze, convert traces of various formats.
● Shortcomings of Babeltrace 1:

● Intermediary representation (IR) coupled to CTF
● No external plugin system

● Cross-platform: Linux, macOS, Windows
● https://github.com/efficios/babeltrace

https://github.com/efficios/babeltrace

5/26Simon Marchi <simon.marchi@efficios.com>

Babeltrace 2, a status update

● All expected API changes for 2.0 are done.
● Documentation is being written.
● RC1 is expected in A Few WeeksTM

6/26Simon Marchi <simon.marchi@efficios.com>

Important concepts

7/26Simon Marchi <simon.marchi@efficios.com>

It all starts with a graph
A graph is made of several components connected together

8/26Simon Marchi <simon.marchi@efficios.com>

Communication between components
● Messages flow from upstream components to downstream

components.
● Some message types:

● Stream beginning message
● Event message
● Stream end message

9/26Simon Marchi <simon.marchi@efficios.com>

Lifecycle of a graph (simplified)
● User adds components and connects them
● Sinks create iterators on their input ports
● The graph asks sinks to consume from their iterators
● When all iterators of all sinks have reached the end, the

graph execution has completed successfully.

10/26Simon Marchi <simon.marchi@efficios.com>

The library vs the command-line tool
● libbabeltrace2 is a library to build and execute a graph

● C and Python bindings
● babeltrace2 is a CLI tool build around libbabeltrace2 to build

and run a graph from the command line

11/26Simon Marchi <simon.marchi@efficios.com>

Your component classes...
● ... can be written in C or Python
● ... can be written directly in your application that uses

libbabeltrace2 (either in C or Python)
● ... can be distributed as plugins, loaded by another application

using libbabeltrace2 (including the babeltrace2 CLI)
● C plugins are distributed as .so/.dll shared libraries
● Python plugins are distributed as .py source files

12/26Simon Marchi <simon.marchi@efficios.com>

Let’s write some components

13/26Simon Marchi <simon.marchi@efficios.com>

Boilerplate for a Python plugin

● Named bt_plugin_*.py
● Registration: bt2.register_plugin(__name__, ‘foo’)

14/26Simon Marchi <simon.marchi@efficios.com>

My first sink

● In __init__, create input port.
● In _user_graph_is_configured, create iterator on the input port

(on the upstream component).
● In _user_consume, consume messages from the iterator and do

something useful with them.

Let’s go try it ⌨.

15/26Simon Marchi <simon.marchi@efficios.com>

My first source

● In __init__, create trace class, stream class, event class and
output port.

● Define source’s iterator class.
● In the iterator’s __next__, return some messages.

Let’s go try one ⌨.

16/26Simon Marchi <simon.marchi@efficios.com>

Next steps

17/26Simon Marchi <simon.marchi@efficios.com>

Next steps

● Use parameters for component configuration.
● Support babeltrace.support-info query to allow for automatic

source discovery.
● This makes babeltrace2 <mytrace> just work.

● Use error error system to provide user-friendly error
messages.

18/26Simon Marchi <simon.marchi@efficios.com>

Plugin examples

● Multiple in-tree component classes
● Some examples here [1]:

● CAN Bus messages source
● Plot-drawing sink

[1] https://github.com/simark/babeltrace-fun-plugins

https://github.com/simark/babeltrace-fun-plugins

19/26Simon Marchi <simon.marchi@efficios.com>

Questions
Thanks for your attention. Any questions?

20/26Simon Marchi <simon.marchi@efficios.com>

Bonus slides!

21/26Simon Marchi <simon.marchi@efficios.com>

Queries
Queries are a way to poke a component class to get some
information, before a component of that class is instantiated.

● Can be queried from the CLI or programmatically.
● Arbitrary query object (a string) and parameters.
● In Python, implement static/class method _user_query.

22/26Simon Marchi <simon.marchi@efficios.com>

Automatic source discovery
● User-friendly alternative to having to specify components

explicitly (with -c source.foo.bar --params ...).
● When a non-option string is passed to the CLI

(e.g. babeltrace2 mytrace), it queries all known source
component classes (CC) with the babeltrace.support-info
object. CC respond with a weight in the [0, 1] range.

● Recurses into directories.
● Works with paths (files and directories) and other strings (e.g.
babeltrace2 net://somehost:1234).

23/26Simon Marchi <simon.marchi@efficios.com>

Error handling
When an error occurs, your plugin can append error causes,
such that when a critical failure happens, the user can see
precisely where things went wrong.

● In Python, simply raise an exception, the native side translates
it to an error cause.

● In C, you have to do it manually, with e.g.
BT_CURRENT_THREAD_ERROR_APPEND_CAUSE_FROM_COMPONENT

24/26Simon Marchi <simon.marchi@efficios.com>

Error handling
Here’s an example of an error stack printed by the CLI.

25/26Simon Marchi <simon.marchi@efficios.com>

Details sink
The sink.text.details component class (provided with BT2)
prints details about all messages it receives (even what is not
directly user-visible), in a deterministic way. Useful for:

● Debugging while developping a source of filter.
● Automated tests, compare the sink.text.details output to an

expected output.
● Verifying that the Python component you are re-writting in C

provides the same results.

26/26Simon Marchi <simon.marchi@efficios.com>

Details sink
An example:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

