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Questions?
Note slide number and 

ask at the end.
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Babeltrace 2, reminder and status
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Babeltrace 2, a reminder

● Process, analyze, convert traces of various formats.
● Shortcomings of Babeltrace 1:

● Intermediary representation (IR) coupled to CTF
● No external plugin system

● Cross-platform: Linux, macOS, Windows
● https://github.com/efficios/babeltrace 

https://github.com/efficios/babeltrace
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Babeltrace 2, a status update

● All expected API changes for 2.0 are done.
● Documentation is being written.
● RC1 is expected in A Few WeeksTM
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Important concepts
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It all starts with a graph
A graph is made of several components connected together
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Communication between components
● Messages flow from upstream components to downstream 

components.
● Some message types:

● Stream beginning message
● Event message
● Stream end message
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Lifecycle of a graph (simplified)
● User adds components and connects them
● Sinks create iterators on their input ports
● The graph asks sinks to consume from their iterators
● When all iterators of all sinks have reached the end, the 

graph execution has completed successfully.
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The library vs the command-line tool
● libbabeltrace2 is a library to build and execute a graph

● C and Python bindings
● babeltrace2 is a CLI tool build around libbabeltrace2 to build  

and run a graph from the command line
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Your component classes...
● ... can be written in C or Python
● ... can be written directly in your application that uses 

libbabeltrace2 (either in C or Python)
● ... can be distributed as plugins, loaded by another application 

using libbabeltrace2 (including the babeltrace2 CLI)
● C plugins are distributed as .so/.dll shared libraries
● Python plugins are distributed as .py source files
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Let’s write some components
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Boilerplate for a Python plugin

● Named bt_plugin_*.py
● Registration: bt2.register_plugin(__name__, ‘foo’)
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My first sink

● In __init__, create input port.
● In _user_graph_is_configured, create iterator on the input port 

(on the upstream component).
● In _user_consume, consume messages from the iterator and do 

something useful with them.

Let’s go try it ⌨.
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My first source

● In __init__, create trace class, stream class, event class and 
output port.

● Define source’s iterator class.
● In the iterator’s __next__, return some messages.

Let’s go try one ⌨.
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Next steps
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Next steps

● Use parameters for component configuration.
● Support babeltrace.support-info query to allow for automatic 

source discovery.
● This makes babeltrace2 <mytrace> just work.

● Use error error system to provide user-friendly error 
messages.
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Plugin examples

● Multiple in-tree component classes
● Some examples here [1]:

● CAN Bus messages source
● Plot-drawing sink

[1] https://github.com/simark/babeltrace-fun-plugins 

https://github.com/simark/babeltrace-fun-plugins
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Questions
Thanks for your attention.  Any questions?
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Bonus slides!
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Queries
Queries are a way to poke a component class to get some 
information, before a component of that class is instantiated.

● Can be queried from the CLI or programmatically.
● Arbitrary query object (a string) and parameters.
● In Python, implement static/class method _user_query.
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Automatic source discovery
● User-friendly alternative to having to specify components 

explicitly (with -c source.foo.bar --params ...).
● When a non-option string is passed to the CLI

(e.g. babeltrace2 mytrace), it queries all known source 
component classes (CC) with the babeltrace.support-info 
object.  CC respond with a weight in the [0, 1] range.

● Recurses into directories.
● Works with paths (files and directories) and other strings (e.g. 
babeltrace2 net://somehost:1234).
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Error handling
When an error occurs, your plugin can append error causes, 
such that when a critical failure happens, the user can see 
precisely where things went wrong.

● In Python, simply raise an exception, the native side translates 
it to an error cause.

● In C, you have to do it manually, with e.g. 
BT_CURRENT_THREAD_ERROR_APPEND_CAUSE_FROM_COMPONENT
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Error handling
Here’s an example of an error stack printed by the CLI.
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Details sink
The sink.text.details component class (provided with BT2) 
prints details about all messages it receives (even what is not 
directly user-visible), in a deterministic way.  Useful for:

● Debugging while developping a source of filter.
● Automated tests, compare the sink.text.details output to an 

expected output.
● Verifying that the Python component you are re-writting in C 

provides the same results.
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Details sink
An example:
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