
<Insert Picture Here>

eBPF as execution engine for DTrace
dr. Kris Van Hees
Consulting Engineer, Languages and Tools
Linux Engineering



2

DTrace on Linux (w/o eBPF)

Static 
probes

Function 
boundary 

probes

System 
call 

probes
Userlevel  

probes
Timer 
probes

Perf 
probes

SDT FBT systrace fasttrap profile

Probe action processor

Action helpers DIF execution engine DIF subroutine helpers

Trace buffer management

Userspace consumer

P
ro

be
s

P
ro

vi
de

rs
A

ct
io

n 
ex

ec
ut

io
n 

en
gi

ne
C

on
su

m
er



3

DTrace

• Userspace:
➢ Probe context: registers, arguments, …
➢ Task context: pid, ppid, uid/gid, euid/egid, comm, …
➢ Consumer context: buffers, ...

• Kernel:
➢ Statically Defined Tracing (SDT) probes
➢ Low-level probe firing mechanisms
➢ DTrace specific task management
➢ Expose DTrace kernel features to DTrace kernel modules

• Kernel modules:
➢ Core DTrace module: API to providers, probe action 

execution, buffer management
➢ Provider modules: expose probes to DTrace core, 

implement generic probe API, probe firing mechanism



4

eBPF
● Based on the Berkeley Packet Filter (BPF) project
● Extended to be a bytecode-based execution engine
● Designed to be safe and fast
● Designed to support easy Just-In-Time compilation

● Originally used for network filters
● Now you can attach BPF programs to various other things:

➢ kprobes / uprobes
➢ tracepoints
➢ perf events
➢ ...



5

Tracing facilities in the Linux kernel

• SDT: tracepoints
• FBT: kprobe / kretprobe
• Pid: uprobe / uretprobe
• Profile: software timer perf events
• Syscall: tracepoints (sys_enter_*, sys_exit_*)

• All are exposed through /sys/kernel/debug/tracing/events
• All are presented as tracing events, and eBPF programs can 

be attached to all of them
• All tracing probes can use the perf_event_output helper to 

write output to a perf_event output ring buffer



6

Tracing with eBPF

• Create a kprobe/uprobe, or “open” a perf event
• Load a eBPF program (using the bpf() system call)
• Attach the eBPF program to the perf event
• [ Enable the probe ]

• eBPF program writes output using bpf_perf_event_output()
• Userspace reads from the perf_event ring-buffer when data 

is available

• eBPF programs are usually compiled using Clang/LLVM

• Pretty straightforward… or so it seems



7

Complications

• Each BPF program consumes n pages (n >= 1)
• Probe specific program types, with probe-specific context
• Each program type has its own list of accessible helpers
• Not all task data can be obtained with a helper (e.g. ppid)
• BPF does not allow dereferencing pointers
• Limited output options:

bpf_trace_printk() - add message to trace buffer

bpf_perf_event_output() - add event sample to ring buffer



8

DTrace

• D programs (DIF code) execute in a DTrace context
• All probe types trigger execution in that same context
• DTrace generates efficient output (no need for meta-data)

• Big differences between eBPF and DTrace:
● eBPF: probe executes BPF program
● DTrace: probe triggers execution of DIF code fragments

● eBPF: output encapsulated in perf_event sample data
● DTrace: raw data

● Linux probes/events do not map well to the standard 
DTrace probe naming: provider:module:function:name



9

DTrace workflow (before eBPF)

• D scripts are a collection of clauses each tied to one or more 
probes

• Each clause is a sequence of actions (some generate data, 
some manipulate variables, some perform more complex 
functions)

• Each action usually has some D expression associated with 
it, compiled into Dtrace Intermediate Format (DIF) code

• When a probe fires, the execution engine loops through all 
clauses associated with it

• For every clause, the execution engine loops through all 
actions that are part of it

• For every action, if there is a D expression associated with 
it, it is executed by the DIF emulator

• … it must have been a good idea at the time...



10

DTrace based on eBPF (1st attempt)

• Redesign of DTrace based on eBPF and kernel facilities
• Identified some “shortcomings”
• Proposed patches to eBPF and other kernel components to 

support a more tracing-centric general design

• Patches were rejected because kernel developers did not 
believe they were necessary



11

DTrace based on eBPF (2nd attempt)

• New philosophy: Let’s assume we can implement DTrace 
without any kernel modifications

• Assume that we can do this without impacting the 
performance and stability we’ve grown accustomed to

• Perform accuracy, stability and performance tests
• Use results to either confirm that kernel modification are 

not needed, or to provide evidence that modifications to the 
kernel are needed

• Still in progress...



12

Before we go on…  Why?

• DTrace has been around for quite a long time
➢Quite a few people are familiar with it
➢Its feature set has been very well documented
➢It has proven to be quite good at what it does
➢It has been ported to multiple OSes

• DTrace provides a powerful programmable tracing system
➢Easy to do very basic tracing
➢Powerful enough to support use cases that involve 

complex combinations of probes
➢Stable enough to do long-term tracing (even always-on)

• People want it.

• DTrace can break through some of the limitations imposed 
by its original design without changing how it works



13

DTrace on Linux (w/ eBPF)

Static probes
 Syscall 
probes

uprobes
Timer 
probes

kprobes 
(FBT)

Tracing events

Trace event handlers

eBPF execution engine eBPF helpers

perf_event output ring buffer

Userspace consumer

P
ro

be
s

In
te

rf
ac

e
A

ct
io

n 
ex

ec
ut

io
n 

en
gi

ne
C

on
su

m
er

Sysfs Interface



14

DTrace v2 based on eBPF

• Generate an eBPF program for each D script clause
• Generate an eBPF trampoline program for each probe

➢Set up an ECB structure to capture DTrace state
➢Call the eBPF program associated with the probe

• Attach the trampoline to the probe
• Provide eBPF functions to implement specific actions

• All functionality is moved into userspace
• It is unlikely that this approach scales well with large 

numbers of probes

• Advantage: problems we find benefit other tracing projects!



15

DTrace v2 based on eBPF (cont.)

• DTrace has its own compiler to eBPF (D to eBPF)
• Full control over what data to collect, how to collect it, and 

how to prepare it for post-processing

• Very big paradigm shift for Dtrace:
➢Before: DTrace was kernel based with a userspace front
➢Now: DTrace becomes a user of existing facilities
➢Advantage: We can actually contribute to the overall 

Linux framework
➢Advantage: We don’t have to maintain everything 

ourselves (← My favourite!)



16

DTrace v2: Pending contributions

• Compact C Type Format (CTF) data
➢Emphasis on “compact”
➢Necessary for function arguments, typed access to 

kernel data
• /proc/kallmodsyms

➢Similar to /proc/kallsyms
➢Add symbol size information
➢Add module name info (even for builtin modules)
➢Needed to provide stable probe naming regardless of 

whether modules are compiled in or loadable



17

Unsolved mysteries...

• Is the existing set of probes in Linux sufficient for what 
DTrace has traditionally provided (especially documented 
probes that are expected to be available with DTrace).

• Should we use custom trampoline eBPF programs that 
“translate” existing probes into probes we need?

• What is the best way to contribute new probes to the kernel 
(not specific to DTrace).

• Can we support tracing using thousands of probes?
• How to get past eBPF limits (e.g. a probe can only have 64 

eBPF programs attached to it)

• And, and, and, ...



18

Where to find things...

• Compiler support for eBPF added to gcc [JM]
• Sent to gcc-patches last week

• Toolchain support for eBPF added to binutils [JM]
• Compact C Type Format support added to binutils [NA]

• https://sourceware.org/git/binutils-gdb.git (master)
• Libbpf to interact with eBPF and perv events in the kernel

• Included in DTrace (modified version of libbpf from the 
kernel source tree)

• Will be obsolete in the near future (we only use a very 
small portion of the functionality it provides)

• DTrace (very much a work in progress)
• https://github.com/oracle/dtrace-utils (2.0-branch)

JM = José Marchesi, NA = Nick Alcock

https://sourceware.org/git/binutils-gdb.git
https://github.com/oracle/dtrace-utils

	Title of Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

