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DTrace on Linux (w/o eBPF)
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DTrace

• Userspace:
➢ Probe context: registers, arguments, …
➢ Task context: pid, ppid, uid/gid, euid/egid, comm, …
➢ Consumer context: buffers, ...

• Kernel:
➢ Statically Defined Tracing (SDT) probes
➢ Low-level probe firing mechanisms
➢ DTrace specific task management
➢ Expose DTrace kernel features to DTrace kernel modules

• Kernel modules:
➢ Core DTrace module: API to providers, probe action 

execution, buffer management
➢ Provider modules: expose probes to DTrace core, 

implement generic probe API, probe firing mechanism
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eBPF
● Based on the Berkeley Packet Filter (BPF) project
● Extended to be a bytecode-based execution engine
● Designed to be safe and fast
● Designed to support easy Just-In-Time compilation

● Originally used for network filters
● Now you can attach BPF programs to various other things:

➢ kprobes / uprobes
➢ tracepoints
➢ perf events
➢ ...
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Tracing facilities in the Linux kernel

• SDT: tracepoints
• FBT: kprobe / kretprobe
• Pid: uprobe / uretprobe
• Profile: software timer perf events
• Syscall: tracepoints (sys_enter_*, sys_exit_*)

• All are exposed through /sys/kernel/debug/tracing/events
• All are presented as tracing events, and eBPF programs can 

be attached to all of them
• All tracing probes can use the perf_event_output helper to 

write output to a perf_event output ring buffer
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Tracing with eBPF

• Create a kprobe/uprobe, or “open” a perf event
• Load a eBPF program (using the bpf() system call)
• Attach the eBPF program to the perf event
• [ Enable the probe ]

• eBPF program writes output using bpf_perf_event_output()
• Userspace reads from the perf_event ring-buffer when data 

is available

• eBPF programs are usually compiled using Clang/LLVM

• Pretty straightforward… or so it seems
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Complications

• Each BPF program consumes n pages (n >= 1)
• Probe specific program types, with probe-specific context
• Each program type has its own list of accessible helpers
• Not all task data can be obtained with a helper (e.g. ppid)
• BPF does not allow dereferencing pointers
• Limited output options:

bpf_trace_printk() - add message to trace buffer

bpf_perf_event_output() - add event sample to ring buffer
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DTrace

• D programs (DIF code) execute in a DTrace context
• All probe types trigger execution in that same context
• DTrace generates efficient output (no need for meta-data)

• Big differences between eBPF and DTrace:
● eBPF: probe executes BPF program
● DTrace: probe triggers execution of DIF code fragments

● eBPF: output encapsulated in perf_event sample data
● DTrace: raw data

● Linux probes/events do not map well to the standard 
DTrace probe naming: provider:module:function:name
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DTrace workflow (before eBPF)

• D scripts are a collection of clauses each tied to one or more 
probes

• Each clause is a sequence of actions (some generate data, 
some manipulate variables, some perform more complex 
functions)

• Each action usually has some D expression associated with 
it, compiled into Dtrace Intermediate Format (DIF) code

• When a probe fires, the execution engine loops through all 
clauses associated with it

• For every clause, the execution engine loops through all 
actions that are part of it

• For every action, if there is a D expression associated with 
it, it is executed by the DIF emulator

• … it must have been a good idea at the time...
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DTrace based on eBPF (1st attempt)

• Redesign of DTrace based on eBPF and kernel facilities
• Identified some “shortcomings”
• Proposed patches to eBPF and other kernel components to 

support a more tracing-centric general design

• Patches were rejected because kernel developers did not 
believe they were necessary
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DTrace based on eBPF (2nd attempt)

• New philosophy: Let’s assume we can implement DTrace 
without any kernel modifications

• Assume that we can do this without impacting the 
performance and stability we’ve grown accustomed to

• Perform accuracy, stability and performance tests
• Use results to either confirm that kernel modification are 

not needed, or to provide evidence that modifications to the 
kernel are needed

• Still in progress...
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Before we go on…  Why?

• DTrace has been around for quite a long time
➢Quite a few people are familiar with it
➢Its feature set has been very well documented
➢It has proven to be quite good at what it does
➢It has been ported to multiple OSes

• DTrace provides a powerful programmable tracing system
➢Easy to do very basic tracing
➢Powerful enough to support use cases that involve 

complex combinations of probes
➢Stable enough to do long-term tracing (even always-on)

• People want it.

• DTrace can break through some of the limitations imposed 
by its original design without changing how it works
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DTrace on Linux (w/ eBPF)
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DTrace v2 based on eBPF

• Generate an eBPF program for each D script clause
• Generate an eBPF trampoline program for each probe

➢Set up an ECB structure to capture DTrace state
➢Call the eBPF program associated with the probe

• Attach the trampoline to the probe
• Provide eBPF functions to implement specific actions

• All functionality is moved into userspace
• It is unlikely that this approach scales well with large 

numbers of probes

• Advantage: problems we find benefit other tracing projects!
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DTrace v2 based on eBPF (cont.)

• DTrace has its own compiler to eBPF (D to eBPF)
• Full control over what data to collect, how to collect it, and 

how to prepare it for post-processing

• Very big paradigm shift for Dtrace:
➢Before: DTrace was kernel based with a userspace front
➢Now: DTrace becomes a user of existing facilities
➢Advantage: We can actually contribute to the overall 

Linux framework
➢Advantage: We don’t have to maintain everything 

ourselves (← My favourite!)



16

DTrace v2: Pending contributions

• Compact C Type Format (CTF) data
➢Emphasis on “compact”
➢Necessary for function arguments, typed access to 

kernel data
• /proc/kallmodsyms

➢Similar to /proc/kallsyms
➢Add symbol size information
➢Add module name info (even for builtin modules)
➢Needed to provide stable probe naming regardless of 

whether modules are compiled in or loadable
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Unsolved mysteries...

• Is the existing set of probes in Linux sufficient for what 
DTrace has traditionally provided (especially documented 
probes that are expected to be available with DTrace).

• Should we use custom trampoline eBPF programs that 
“translate” existing probes into probes we need?

• What is the best way to contribute new probes to the kernel 
(not specific to DTrace).

• Can we support tracing using thousands of probes?
• How to get past eBPF limits (e.g. a probe can only have 64 

eBPF programs attached to it)

• And, and, and, ...
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Where to find things...

• Compiler support for eBPF added to gcc [JM]
• Sent to gcc-patches last week

• Toolchain support for eBPF added to binutils [JM]
• Compact C Type Format support added to binutils [NA]

• https://sourceware.org/git/binutils-gdb.git (master)
• Libbpf to interact with eBPF and perv events in the kernel

• Included in DTrace (modified version of libbpf from the 
kernel source tree)

• Will be obsolete in the near future (we only use a very 
small portion of the functionality it provides)

• DTrace (very much a work in progress)
• https://github.com/oracle/dtrace-utils (2.0-branch)

JM = José Marchesi, NA = Nick Alcock

https://sourceware.org/git/binutils-gdb.git
https://github.com/oracle/dtrace-utils
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