
Integration of the LTTng user-space 
tracer with the RSEQ system call

Tracing Summit 2019Tracing Summit 2019

mathieu.desnoyers@efcios.com 



2

ContentContent

● What are Restartable Sequences ?
● How is RSEQ useful for LTTng-UST ?
● Restartable Sequences upstreaming status
● Missing Pieces
● Solutions
● Ongoing effort



3

What are Restartable Sequences (RSEQ) ?What are Restartable Sequences (RSEQ) ?

● Linux kernel system call registering a Thread-Local Storage 
area allowing user-space to perform updates on per-cpu data 
efficiently,

● Achieve critical section atomicity with respect to scheduler by 
aborting critical sections on preemption and signal delivery 
rather than disabling preemption.



4

RSEQ Structure MembersRSEQ Structure Members

Restartable Sequence Critical Section

struct rseq_cs {
    void *start_ip;
    void *post_commit_ip;
    void *abort_ip;
    [...]
};

struct rseq {
    int32_t cpu_id;
    struct rseq_cs *rseq_cs;
    [...]
};

Thread-Local Storage __rseq_abi:

Abort Handler



5

How is RSEQ useful for LTTng-UST ?How is RSEQ useful for LTTng-UST ?

● LTTng-UST implements per-CPU ring buffers:
– Eliminate false-sharing,

– Reserve and commit counters scheme,

● RSEQ accelerates reading the current cpu number,
● RSEQ replaces atomic operations for reserve and commit on 

per-CPU data by faster non-atomic loads and stores.



6

Other uses of RSEQOther uses of RSEQ

● Per-CPU pool memory allocation,
● Per-CPU ring buffer,
● Per-CPU statistics accounting,
● Per-CPU RCU grace period tracking,
● User-space PMU counters read from user-space on big/LITTLE 

ARM64.



7

RSEQ Benchmarks: Get Current CPU NumberRSEQ Benchmarks: Get Current CPU Number



8

RSEQ Benchmarks: Statistics CounterRSEQ Benchmarks: Statistics Counter



9

RSEQ Benchmarks: LTTng-UST Ring BufferRSEQ Benchmarks: LTTng-UST Ring Buffer



10

Restartable Sequences Linux IntegrationRestartable Sequences Linux Integration

● Linux 4.18:
– RSEQ system call merged,

– RSEQ wired up for x86 32/64, powerpc 32/64, arm 32, mips 32/64,

● Linux 4.19:
– RSEQ wired up for arm 64, s390 32/64,



11

Restartable Sequences glibc IntegrationRestartable Sequences glibc Integration

● Submitted for glibc 2.31,
● Includes:

– RSEQ TLS registration,

– Use of RSEQ to accelerate sched_getcpu(3).



12

Missing PiecesMissing Pieces

● Perform update of per-CPU data from other cpus:

– The case of lttng-consumerd live and switch timers.

– Cannot be done reliably with CPU affinity due to CPU hotplug.



13

Missing PiecesMissing Pieces

● Early/late use in libc initialization and thread lifetime, where the RSEQ TLS is not yet 
registered:

– Within libc and dynamic linker initialization,

– Preloaded libraries constructors,

– Audit libraries,

– IFUNC resolvers,

– Signal handlers,
● Guarantee progress under debugger single-stepping for current debuggers.



14

SolutionsSolutions

● New system call: do_on_cpu() (previously submitted as 
cpu_opv())

● eBPF bytecode interpreter within the kernel,
– Running either in IPI handler or thread context with preemption 

disabled on the target CPU,

– Specialized to load and store exclusively from/to user-space memory.

● Use this system call as fallback when RSEQ is not registered 
for the current thread or aborts due to preemption.



15

Ongoing EffortOngoing Effort

1) Upstreaming RSEQ TLS registration within glibc,
● Submitted, being reviewed by maintainers,

2) Justify further RSEQ-related kernel code by showing RSEQ 
adoption by the community,

3) Consider upstreaming do_on_cpu() eBPF bytecode interpreter 
system call into Linux,

4) Complete integration of RSEQ+do_on_cpu() within LTTng-UST.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

