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What are Restartable Sequences (RSEQ) ?What are Restartable Sequences (RSEQ) ?

● Linux kernel system call registering a Thread-Local Storage 
area allowing user-space to perform updates on per-cpu data 
efficiently,

● Achieve critical section atomicity with respect to scheduler by 
aborting critical sections on preemption and signal delivery 
rather than disabling preemption.
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RSEQ Structure MembersRSEQ Structure Members

Restartable Sequence Critical Section

struct rseq_cs {
    void *start_ip;
    void *post_commit_ip;
    void *abort_ip;
    [...]
};

struct rseq {
    int32_t cpu_id;
    struct rseq_cs *rseq_cs;
    [...]
};

Thread-Local Storage __rseq_abi:

Abort Handler



5

How is RSEQ useful for LTTng-UST ?How is RSEQ useful for LTTng-UST ?

● LTTng-UST implements per-CPU ring buffers:
– Eliminate false-sharing,

– Reserve and commit counters scheme,

● RSEQ accelerates reading the current cpu number,
● RSEQ replaces atomic operations for reserve and commit on 

per-CPU data by faster non-atomic loads and stores.
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Other uses of RSEQOther uses of RSEQ

● Per-CPU pool memory allocation,
● Per-CPU ring buffer,
● Per-CPU statistics accounting,
● Per-CPU RCU grace period tracking,
● User-space PMU counters read from user-space on big/LITTLE 

ARM64.
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RSEQ Benchmarks: Get Current CPU NumberRSEQ Benchmarks: Get Current CPU Number
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RSEQ Benchmarks: Statistics CounterRSEQ Benchmarks: Statistics Counter
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RSEQ Benchmarks: LTTng-UST Ring BufferRSEQ Benchmarks: LTTng-UST Ring Buffer
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Restartable Sequences Linux IntegrationRestartable Sequences Linux Integration

● Linux 4.18:
– RSEQ system call merged,

– RSEQ wired up for x86 32/64, powerpc 32/64, arm 32, mips 32/64,

● Linux 4.19:
– RSEQ wired up for arm 64, s390 32/64,
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Restartable Sequences glibc IntegrationRestartable Sequences glibc Integration

● Submitted for glibc 2.31,
● Includes:

– RSEQ TLS registration,

– Use of RSEQ to accelerate sched_getcpu(3).
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Missing PiecesMissing Pieces

● Perform update of per-CPU data from other cpus:

– The case of lttng-consumerd live and switch timers.

– Cannot be done reliably with CPU affinity due to CPU hotplug.
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Missing PiecesMissing Pieces

● Early/late use in libc initialization and thread lifetime, where the RSEQ TLS is not yet 
registered:

– Within libc and dynamic linker initialization,

– Preloaded libraries constructors,

– Audit libraries,

– IFUNC resolvers,

– Signal handlers,
● Guarantee progress under debugger single-stepping for current debuggers.
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SolutionsSolutions

● New system call: do_on_cpu() (previously submitted as 
cpu_opv())

● eBPF bytecode interpreter within the kernel,
– Running either in IPI handler or thread context with preemption 

disabled on the target CPU,

– Specialized to load and store exclusively from/to user-space memory.

● Use this system call as fallback when RSEQ is not registered 
for the current thread or aborts due to preemption.
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Ongoing EffortOngoing Effort

1) Upstreaming RSEQ TLS registration within glibc,
● Submitted, being reviewed by maintainers,

2) Justify further RSEQ-related kernel code by showing RSEQ 
adoption by the community,

3) Consider upstreaming do_on_cpu() eBPF bytecode interpreter 
system call into Linux,

4) Complete integration of RSEQ+do_on_cpu() within LTTng-UST.
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