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Summary

● What is Trace Compass and Theia

● Trace Compass evolution

● Trace Server Protocol

● Trace Compass on Theia

● Scripting with Ease

● Conclusion

Some of this work was performed as part of a Collaborative Research and 
Development project at Polytechnique Montreal with Ericsson, Ciena and EfficiOS, with 
funding from NSERC, Prompt, Ericsson, Ciena, Google and EfficiOS.
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● Trace
● Series of events over time
● Event collected at tracepoints during program 

execution
● Each event has a type and payload

● Use the events as input for analysis
● Create visualization graphs with these analysis
● Tracing use cases

● Profile application
● Find long executions
● Investigate real-time deadlines
● Find memory or load issues
● Investigate concurrency problems

Trace Compass: an open source trace analysis tool to 
solve performance and reliability problems
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● Cloud and desktop IDE
● Modules in different langages accessed through 

protocols.
● Based on several existing state-of-the-art modules :

● Monaco editor
● Chromium
● React.js
● Language servers
● Debug adapters
● Visual Studio Code extensions

Theia: an extensible open-source framework to 
develop multi-language IDEs for the cloud and desktop 
using state-of-the-art web technologies
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Trace Compass architecture
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Proposed Client-Server architecture

Trace Compass Core

Trace Compass UI 

Trace State

System
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store

Trace Compass Core

Theia

Trace State

System

Segment
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Trace Server Protocol (REST or RPC)
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Trace Server Protocol

Language 
Server

Debug 
Server

Trace 
Server

Trace Server Protocol (TSP)Debug Adapter Protocol (DAP)Language Server Protocol (LSP)
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● Protocol built to handle communication between backend and frontend of trace 
viewer, allowing traces to reside and be analysed on the backend.

● Exchange visualization data between a client and a server
● Trace management
● Server-side filtering and searching
● https://github.com/theia-ide/trace-server-protocol
● Integration with Theia using tsp-typescript-client

● TSP ready client to perform your requests
● Abstract the technology used (REST, HTTP)
● NPM package available
● https://github.com/theia-ide/tsp-typescript-client

● Contributions and feedback are welcome

Trace Server Protocol (TSP)

https://github.com/theia-ide/trace-server-protocol
https://github.com/theia-ide/tsp-typescript-client
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● Modular architecture (using modules in different langages leveraging LSP, 
DAP…).

● Thin UI client or scripted access.

● Leveraging modern UI technologies (React.js)

● Continuous integration (e.g. traces directly from Jenkins)

● Integration with bug report tools (e.g. open traces)

● Integration with workspace management (e.g. Eclipse Che)

● Higher scalability / Performance

● Security (traces in the cloud)

Opportunities
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Leveraging LSP and DAP

LSP to lookup source 
code

— DAP to get file and line 
number

— Then use LSP to lookup source 
code
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● Prepare workspace for trouble-shooting sessions

● Cloud IDE

● Get source code

● LSP

● Setup debuggers

● DAP

● Setup trace viewer

● TSP

● Share trouble-shooting sessions (workspaces)

Integration with workspace management

Browser

Workspace management 
server

Theia

Trace server

Language servers

Debug servers

Theia ext. (Trace viewer)
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● Enables micro-services

● Distributed architecture

● Parallel, distributed analysis

● Different traces

● Same traces, different analysis

● Analyze traces that exceed local disk space

Higher Scalability

Trace 
Server

Traces

Analysis 
2

Analysis 
1

TSP
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Theia frontend

● Theia based prototype using the TSP

● Prototype available on GitHub 
https://github.com/delislesim/theia-trace-extension/tree/theiaCompass

● Opportunity for a new UI/UX

● React

● Chart.js

● agGrid

● New time graph library

https://github.com/delislesim/theia-trace-extension/tree/theiaCompass
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Scripted Analyses with Ease

● Finite number of available analyses

● Some flexibility with XML analyses:

● Very verbose

● Hard to read

● Hard to debug

● But it works!

● Ultimate flexibility: scripting
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Provided by Trace Compass       
     

EASE : Eclipse Advanced Scripting Environment

EASE Core:
Integrates scripting

In Eclipse

Script engines

Nashorn+
(js)

JRuby

Groovy

Jython*+
(python)

Rhino*&
(js)

*  Engine supports debugging
+ Tested and working
& Some module functions have problems

supports

Modules

provides API for

Analysis Utils

FiltersDataProvider

View

Others
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Conclusion

● Functionality in Trace Compass migrated gradually to Data Providers

● Most new features are implemented in the backend and work on both frontends

● New views are added to Theia Trace Compass gradually

●  Feature parity will not be reached for at least several months

● Some experimental views may be implemented in Theia first

● A new IDE for the Cloud with Theia and Trace Compass
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● Trace Compass: http://tracecompass.org

● Mailing list: tracecompass-dev@eclipse.org 

● IRC: oftc.net #tracecompass

● Trace Server Protocol

● https://github.com/theia-ide/trace-server-protocol

● https://github.com/theia-ide/tsp-typescript-client

● Theia frontend prototype

● https://github.com/delislesim/theia-trace-extension/tree/theiaCompass

● Trace Compass scripting demo: http://versatic.net/tracingSummit2019.html

Reaching us

http://versatic.net/tracingSummit2019.html
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