
Ericsson Canada TC team: Simon Delisle, Bernd Hufmann, Matthew Khouzam, Patrick Tasse

Polytechnique: Geneviève Bastien, Michel Dagenais (presenter)

A New Flexible Architecture for
Trace Compass

2

Summary

● What is Trace Compass and Theia

● Trace Compass evolution

● Trace Server Protocol

● Trace Compass on Theia

● Scripting with Ease

● Conclusion

Some of this work was performed as part of a Collaborative Research and
Development project at Polytechnique Montreal with Ericsson, Ciena and EfficiOS, with
funding from NSERC, Prompt, Ericsson, Ciena, Google and EfficiOS.

3

● Trace
● Series of events over time
● Event collected at tracepoints during program

execution
● Each event has a type and payload

● Use the events as input for analysis
● Create visualization graphs with these analysis
● Tracing use cases

● Profile application
● Find long executions
● Investigate real-time deadlines
● Find memory or load issues
● Investigate concurrency problems

Trace Compass: an open source trace analysis tool to
solve performance and reliability problems

4

● Cloud and desktop IDE
● Modules in different langages accessed through

protocols.
● Based on several existing state-of-the-art modules :

● Monaco editor
● Chromium
● React.js
● Language servers
● Debug adapters
● Visual Studio Code extensions

Theia: an extensible open-source framework to
develop multi-language IDEs for the cloud and desktop
using state-of-the-art web technologies

5

Trace Compass architecture

Trace Compass Core

Trace Compass UI

Trace State

System

Segment

store

Trace Compass Core

Trace Compass UI

Trace State

System

Segment

store

Data Providers

Current (ongoing)

6

Proposed Client-Server architecture

Trace Compass Core

Trace Compass UI

Trace State

System

Segment

store

Trace Compass Core

Theia

Trace State

System

Segment

store

Trace Server Protocol (REST or RPC)

Data Serializer

Data Providers

Presentation
Layer

Business Layer

Data Layer

Trace
Server

Data Providers

7

Trace Server Protocol

Language
Server

Debug
Server

Trace
Server

Trace Server Protocol (TSP)Debug Adapter Protocol (DAP)Language Server Protocol (LSP)

8

● Protocol built to handle communication between backend and frontend of trace
viewer, allowing traces to reside and be analysed on the backend.

● Exchange visualization data between a client and a server
● Trace management
● Server-side filtering and searching
● https://github.com/theia-ide/trace-server-protocol
● Integration with Theia using tsp-typescript-client

● TSP ready client to perform your requests
● Abstract the technology used (REST, HTTP)
● NPM package available
● https://github.com/theia-ide/tsp-typescript-client

● Contributions and feedback are welcome

Trace Server Protocol (TSP)

https://github.com/theia-ide/trace-server-protocol
https://github.com/theia-ide/tsp-typescript-client

9

● Modular architecture (using modules in different langages leveraging LSP,
DAP…).

● Thin UI client or scripted access.

● Leveraging modern UI technologies (React.js)

● Continuous integration (e.g. traces directly from Jenkins)

● Integration with bug report tools (e.g. open traces)

● Integration with workspace management (e.g. Eclipse Che)

● Higher scalability / Performance

● Security (traces in the cloud)

Opportunities

10

Leveraging LSP and DAP

LSP to lookup source
code

— DAP to get file and line
number

— Then use LSP to lookup source
code

11

● Prepare workspace for trouble-shooting sessions

● Cloud IDE

● Get source code

● LSP

● Setup debuggers

● DAP

● Setup trace viewer

● TSP

● Share trouble-shooting sessions (workspaces)

Integration with workspace management

Browser

Workspace management
server

Theia

Trace server

Language servers

Debug servers

Theia ext. (Trace viewer)

12

● Enables micro-services

● Distributed architecture

● Parallel, distributed analysis

● Different traces

● Same traces, different analysis

● Analyze traces that exceed local disk space

Higher Scalability

Trace
Server

Traces

Analysis
2

Analysis
1

TSP

13

Theia frontend

● Theia based prototype using the TSP

● Prototype available on GitHub
https://github.com/delislesim/theia-trace-extension/tree/theiaCompass

● Opportunity for a new UI/UX

● React

● Chart.js

● agGrid

● New time graph library

https://github.com/delislesim/theia-trace-extension/tree/theiaCompass

14

Scripted Analyses with Ease

● Finite number of available analyses

● Some flexibility with XML analyses:

● Very verbose

● Hard to read

● Hard to debug

● But it works!

● Ultimate flexibility: scripting

15

Provided by Trace Compass

EASE : Eclipse Advanced Scripting Environment

EASE Core:
Integrates scripting

In Eclipse

Script engines

Nashorn+
(js)

JRuby

Groovy

Jython*+
(python)

Rhino*&
(js)

* Engine supports debugging
+ Tested and working
& Some module functions have problems

supports

Modules

provides API for

Analysis Utils

FiltersDataProvider

View

Others

16

Conclusion

● Functionality in Trace Compass migrated gradually to Data Providers

● Most new features are implemented in the backend and work on both frontends

● New views are added to Theia Trace Compass gradually

● Feature parity will not be reached for at least several months

● Some experimental views may be implemented in Theia first

● A new IDE for the Cloud with Theia and Trace Compass

17

● Trace Compass: http://tracecompass.org

● Mailing list: tracecompass-dev@eclipse.org

● IRC: oftc.net #tracecompass

● Trace Server Protocol

● https://github.com/theia-ide/trace-server-protocol

● https://github.com/theia-ide/tsp-typescript-client

● Theia frontend prototype

● https://github.com/delislesim/theia-trace-extension/tree/theiaCompass

● Trace Compass scripting demo: http://versatic.net/tracingSummit2019.html

Reaching us

http://versatic.net/tracingSummit2019.html

	Slide 1
	Slide 2
	What is tracing?
	Slide 4
	Trace Compass architecture
	Server-client architecture Proposal
	Trace Server Protocol (TSP)_clipboard1
	Trace Server Protocol (TSP)
	Opportunities
	Leveraging LSP and DAP
	Integration with workspace management
	Higher scalability
	Theia frontend
	Slide 14
	Slide 15
	Slide 16
	References

