
Linux & Windows Perf Analysis using WPA

ivberg@microsoft.com

Tristan.Gibeau@microsoft.com

De.Nicolas@microsoft.com

mailto:ivberg@microsoft.com
mailto:Tristan.Gibeau@microsoft.com
mailto:De.Nicolas@microsoft.com

Agenda

Short History/Context

Why? What? How?

Linux Tracing

Overview

Many diverse Linux Tracing Tools

They all have their use and purpose

• Online – meant to be largely used in real-time on the box

• Offline – meant to be largely used to record data, and then

optionally analyzed “offline” on another box with an analysis

toolset

Tooling Use-Case: Offline / Online ?

• Targeted – Looks at one sub-system (File System, SysCalls,

Sockets, etc)

• System – Can be targeted but captures across a wide variety

of subsystems

System-level or Targeted ?

• Scales well for large scale data collection and analysis

• Challenge: Comprehensive - a large amount of data is

collected. You need good tooling to analyze and sift

through data.

LTTng use-case works well for an offline,

system-level tracing

Perf & Tracing Categories

Linux Windows

Perf Tools Strace, netstat, etc Task Mgr, PerfMon, Resource

Monitor, SysInternals Suite

Custom System Observability eBPF (4.4 kernel,

Ubuntu 16.04+)

ETW, Dtrace (Win 10 18342+)

Offline system-level tracing LTTng, perf ETW, XPerf/WPA

https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/DTrace-on-Windows/ba-p/362902

Processing SDK Overview

WPA Graph/Tables

Input File/Stream

.NET Core Extensibility Data Source(s)

File/Stream

Processor(s)

Event

Processor(s)

API

Table

Projector(s)
WPA Exporter (XML/CSV)

Tooling & Automated Pipe

Common Trace Format Data Source

CTF Stream(s)

Event Processor

Register(“MyEvent”)

OnEvent

Process Event Payload

Generate State

Generic Event Processor

RegisterAll()

OnEvent

Process & Store

Event Payload

Event Parser/Playback

Plugin Sample Source

// Process Log to data structure

public override Task ProcessAsync(

ISourceDataProcessor<LogEntry> dataProcessor,

ILogger logger,

IProgress<int> progress,

CancellationToken cancellationToken)

{

foreach (var path in this.filePaths)

{

while ((line = file.ReadLine()) != null)

{

var entry = new LogEntry();

// Process log

dataProcessor.ProcessDataElement(entry);

}

}

this.timeInterval = new DataSourceInfo(0,
offsetEndTimestamp.ToNanoseconds, fileStartTime);

}

// GUI Table Configuration

new TableDescriptor (GUID, Name, Desc);

new ColumnConfiguration (new ColumnMetadata (GUID,
Name, Desc), new UIHints (…))

void Build (ITableBuilder tableBuilder,

IDataExtensionRetrieval data)

{

var timeData = data.QueryOutput<TimeData>();

var timestampProj = timeData.Compose(

x => x.timestamp);

var config = new TableConfiguration("Default"){…}

tableBuilder.AddTableConfiguration (config)

.AddColumn (TimeColumn, timeProj);

}

What Plugins are currently supported?

Linux

• LTTng (system-level tracing)

• Dmesg

• Cloud-Init (part of Azure VM Provisioning)

• WaAgent (part of Azure VM Provisioning)

LTTng Linux Kernel WPA Plugin

Demo

1. Install the tracing software:
sudo apt-get install lttng-tools lttng-modules-dkms liblttng-ust-dev

2. Create a session:
sudo lttng create my-kernel-session --output=lttng-kernel-trace

3. Add the desired events to be recorded:
sudo lttng enable-event --kernel

block_rq_complete,block_rq_insert,block_rq_issue,printk_console,sched_wak*,sched_switc
h,sched_process_fork,sched_process_exit,sched_process_exec,lttng_statedump*
sudo lttng enable-event --kernel --syscall –-all

4. Optionally, add context fields to the channel:
sudo lttng add-context --kernel --channel=channel0 --type=tid
sudo lttng add-context --kernel --channel=channel0 --type=pid
sudo lttng add-context --kernel --channel=channel0 --type=procname

5. Start the recording:
sudo lttng start

6. Save the session:
sudo lttng regenerate statedump <- Better correlation / info in WPA

$ sudo lttng stop
$ sudo lttng destroy

More info at https://lttng.org/docs/v2.10/#doc-tracing-the-linux-kernel

How to record an LTTng trace

https://lttng.org/docs/v2.10/#doc-tracing-the-linux-kernel

1. Demo 1: Linux VM – Multiple Plugins /w WPA Unified Timeline

2. Demo 2: Some Load Applied (Stress)

3. Install the tracing software:
sudo apt-get install stress-ng

4. Stress CPU

5. Stress Block IO Device / Disk

6. Stress Filesystem and Syscalls
sudo stress-ng --sequential 1 --class filesystem -t 1s --times --timeout 1s

$ Ctrl-C After 1s

Demo Setup / Context

Demo Contents

WPA Unified Timeline

Stress – Some load applied

file:///C:/Users/ivberg/Videos/Captures/WPA_LTTng_Unified_VM_FormatDisk.mp4
file:///C:/Users/ivberg/Videos/Captures/WPA_LTTng_Stress_CPU_IO_SysCallsFileIO.mp4

Final Thoughts

http://aka.ms/TracingSummit2019

WSL2

http://aka.ms/TracingSummit2019
https://devblogs.microsoft.com/commandline/announcing-wsl-2/

Question & Answer

ivberg@microsoft.com

Tristan.Gibeau@microsoft.com

De.Nicolas@microsoft.com

http://aka.ms/TracingSummit2019

mailto:ivberg@microsoft.com
mailto:Tristan.Gibeau@microsoft.com
mailto:De.Nicolas@microsoft.com
http://aka.ms/TracingSummit2019

Opening a LTTng Common Trace Format (CTF)

WPA – Two ways to load LTTng CTF
• Just LTTng CTF Trace –

◦ File -> Open Folder

• WPA Unified Open (everything in the same session with single timeline)

◦ Workaround:

1) Zip LTTng folder and rename to .ctf extension

2) Copy all files to a single folder including .ctf file

3) File -> Open

Unified Demo

1.Graph Explorer
shows KPIs (Key
Performance
Indicator)

2.Drag and Drop
from Graph
Explorer to
Analysis View

1. Graph
Explorer

2. Analysis View(s)

WPA Layout

Table Layout

Preset Selection
‐ Switch & Save Presets
Graph Mode
‐ Line
‐ Stacked Line/Bar
‐ Flame
Quick Search
‐ Search Across Columns in

Table
Display Modes
‐ Graph Only
‐ Table Only
‐ Split
Pivot Bar (Gold)
‐ Group Similar Data
Graph Bar (Blue)
‐ Graphed Data

Legend

Table Name
Preset Selection Graph Mode

Quick Search
View Editor Display Modes

Pivot Bar Graph Bar

LTTng is an open source tracing framework for
Linux

It provides Kernel modules to trace the Linux kernel

A tracing session has a set of channels, which are a stream of events

Each event belongs to a certain kind, which is identified by a name and
an id

An event contains a dictionary called Payload, which contains all the
information related to the event

A context is provided with each event, for instance, it can contain the
CPU on which the event occurred

Event Example:

We are going to present a WPA plugin that
shows profiling information of the Linux kernel

Analyzes events recorded during a tracing session of LTTng

The plugin will parse and provide information about the following topics:
• Threads and Processes

• Context Switches

• Syscalls

• File related events

• Disk Activity

• Diagnostic Messages

Syscall view
Lists every syscall that occurred during the trace, specifying for each one:
• Name

• Arguments used

• Return value

• Thread Id of the caller

• Process Id of the caller

• Start Time

• End Time

• Duration

Threads View
Contains an entry for every thread that was alive during any moment
of the tracing session.

It has 14 columns, 5 displaying attributes about the thread and 9
specifying how much time the thread spent in different states.

The attributes being shown are:
• Thread Id

• Process Id

• Command (Executable name)

• Start Time

• Exit Time

The states a thread can be in are declared in sched.h.

The kernel defines a user-friendly translation in array.c, as follows:

Threads View

State Translation
TASK_RUNNING R (running)

TASK_INTERRUPTIBLE S (sleeping)

TASK_UNINTERRUPTIBLE D (disk sleep)

__TASK_STOPPED T (stopped)

__TASK_TRACED t (tracing stop)

TASK_PARKED P (parked)

TASK_DEAD (Varies depending on the thread’s exit state)

TASK_WAKEKILL R (running)

TASK_WAKING R (running)

TASK_NOLOAD R (running)

TASK_NEW R (running)

TASK_STATE_MAX R (running)

TASK_KILLABLE D (disk sleep)

TASK_STOPPED T (stopped)

TASK_TRACED t (tracing stop)

TASK_IDLE I (idle)

https://github.com/torvalds/linux/blob/master/fs/proc/array.c
https://github.com/torvalds/linux/blob/master/fs/proc/array.c

Threads View
A column for every of the following translations is presented:
• Running Time

• Sleeping Time

• Disk Sleeping Time

• Stopped Time

• Parked Time

• Idle Time

Each one shows the time spent in any state of such translation

Additionally, the following columns are provided:
• Executing Time – Total time spent executing on any CPU

• Ready Time – The thread was able to run but not scheduled on any CPU

• Waiting Time – Sum of Sleeping Time and Disk Sleeping Time

Threads View

Context Switch View

Column Name Description
CPU CPU on which the context switch occurred
New Process Id Process Id of the thread that is being switched in
New Thread Id Thread Id of the thread that is being switched in
New Command Command Id of the thread that is being switched in
Old Process Id Process Id of the thread that is being switched out
Old Thread Id Thread Id of the thread that is being switched out
Old Command Command Id of the thread that is being switched out
Last Switch Out Time Last time the new thread was switched out from a CPU
New Thread’s Previous State State of the new thread before being ready for execution

Readying Process Id Process Id of the thread that caused the new thread to be ready
Readying Thread Id Thread Id of the thread that caused the new thread to be ready
Ready Time the new thread spent ready for execution before it was switched in
Wait Time between the new thread’s last switch out time and when it became ready

New Switched-In Time Time the new thread spent executing immediately after it was switched in
New Priority Execution priority of the thread that is being switched in
Switch-In Time Time when the context switch happened
Next Switch-Out Time Time when the new thread will be switched out

• Lists every context switch that occurred during the tracing session
• Similar to the “Timeline by CPU” view, under the “CPU Usage (Precise)”

category displayed in WPA when analyzing WPR traces

• Has 17 columns, detailed as follows:

Context Switch View

File Events View

• Lists the following file-related syscalls:
• create, fallocate, ftruncate, lseek, memfd_create, mknod, mknodat,

name_to_handle_at, open, open_by_handle, openat, pread, preadv, pwrite, pwritev,
read, readv, rename, renameat, renameat2, sendfile, truncate, write, writev

• The following information is specified for each entry:
• Name of the syscall

• Thread Id of the caller

• Process Id of the caller

• Size of the operation

• File involved

• Duration

• Start Time

• End Time

Disk Activity View

• Lists every blocking I/O request sent to a disk, specifying the following
for each one:
• Device Id

• File Involved in the operation

• Thread Id of the thread which made the request

• Process Id of the thread which made the request

• Disk’s Sector Number where the data involved in the operation resides

• Disk’s Offset of the data involved in the operation

• Size of the operation

• IO Time

• Error number of the operation

• Request’s Insert Time

• Request’s Issue Time

• Request’s Complete Time

Many useful view arrangements are presented with the
disk view

Diagnostic Messages View

• Lists all the diagnostic messages of the kernel that were logged during
the tracing session

• Alongside the message, a timestamp of when it was created is displayed

All Events View

• Lists all the events of the trace, in a raw format.

• For each entry, the following information is provided:
• Name of the event

• Id of the event

• CPU where the event occurred

• Timestamp

• Payload

About the current heuristics

An event is logged when a syscall starts, and a different one is logged
when it ends
• There is no direct way to know which opening event belongs to each closing one

• We match them by name and the thread id related to the events, that is, the thread id of
the caller

• If a thread issues a syscall of a certain kind while another one of the same type is ongoing,
we have no way of knowing to which syscall the following exiting events belong to. In this
case, both syscalls will be logged with duration zero because we don’t know when they
ended.

If the thread id is not in the context of an event, it can be inferred by
tracking context switch events
• We always know the CPU on which the event occurred. We need to check the latest

context switch on that CPU to find out which thread was being executed and therefore
generated the event.

• Context switches are recorded by LTTng by Pluging sched_switch events to the session

About the current heuristics
The process id of a thread can be inferred when is created by listening to
fork, vfork and clone syscalls.
• If fork or vfork are called, the child utilizes its thread id as process id.

• If clone is used, a bit of one of the arguments indicates if the process id has to be inherited, or
if the child’s thread id should be used as process id instead.

• This heuristic is more tolerant to having multiple ongoing syscalls
◦ If we spot several consecutive fork or vfork entry events, if all the corresponding exit events state that the operation

was successful, although we won’t know which exit event belongs to each entry event, since the child’s thread id is
noted in the entry event, we will be able assign the thread as process id to all the new threads

◦ With clone the situation is similar, although we also must check that the bit we are interested in has the same value on
every clone entry event. If that’s the case, we can confidently utilize the same behavior on every new thread, whether
it is to inherit the process id or utilize its thread id.

• For the processes that were running when the trace started and for those that the syscall
inferring process failed, we will guess its process id is its thread id and place the “[Probably]”
placeholder next to the process id.

getpid syscalls are listened to capture the process id of threads for which
we are not sure of its process id
• When a process id is discovered in this way, all the threads of that process are updated

About the current heuristics

We infer the file involved in each file IO operation
• File IO syscalls have file descriptors as arguments

• We track syscalls that create or open files to know the filepath each descriptor points to

• Rename syscalls must also be tracked to update filepaths when a file is renamed
◦ When we fail to parse a syscall of this kind, both possible filepaths will appear on the file column, with the

placeholder “(maybe renamed to)” in between them

Tracking IO operations allows us to know the file being used when a
disk activity occurs
• If a disk request is issued by a given thread, and that thread has only one ongoing file IO

syscall, we infer that the file being accessed by the activity is the one involved in the
syscall.

• After a successful match, we know on which device the file is on. We can use this
information for future guesses.
◦ If many file IO operations are ongoing when a disk request is placed, but only one is related to a file that is on

the device of the request, we know that’s the file involved in the disk activity.

