
Oct 12th, 2022 - Tracing Summit
lalitm@google.com

Analyzing Perfetto traces at every
scale

About me

lalitm@, 5y in Google

2015 & 2016: Interned @ Google

2017: Joined Google, worked on memory-infra in Chrome on Android

2018: Joined Perfetto as it was founded

2019-today: Work on trace analysis aspects of Perfetto (trace

processor, batch trace processor) and manage tracing rollouts on

Google populations

Agenda
❏ Overview of Perfetto and trace processor

❏ Introduction to Android app startups

❏ Analysing traces in local debugging, lab tests and field tracing

❏ Latest innovations

The goal

❏ Give a sense of the variety of domains we do trace analysis in

❏ Similarities and differences in each domain

❏ Talk is intentionally fast paced

❏ Oodles of unconference time allows for discussing any specific topic in

more depth

❏ Also happy to answer questions/discuss stuff 1:1 - just grab me :)

Overview of Perfetto
& trace processor

Introducing the foundations

Analyze traces

Record traces

Visualize traces

What is Perfetto?

Perfetto UI
(web based, fully offline)

Android GPU Inspector Android Studio

Tracing service
Android / Linux / CrOS / MacOS

/ Windows

Perfetto Trace Processor
Android / Linux / CrOS / MacOS / Windows

Protobuf-based trace format Legacy formats (JSON,
systrace, ...)

SQL Query engine Trace-based
metricsSQLite

Trace tables
data model

Tracing SDK
Android / Linux / CrOS / MacOS / Windows

Trace
Protocol

UNIX socket + shmem

Platform probes
Android / CrOS / Linux

ftrace Heap
Profiler

/proc
pollers

perf_
event

Android
HALs

1 2 3
Device bringup

Local

investigations

Code yellows

Local debugging

Trace-based

metrics
Integration w/
dashboards and
alerting

Lab testing
Traces captured
when
"problematic"
events occur

Hard-to-repro
issues that happen
only in the field

Dynamic field
tracing

Primary use-cases for Perfetto

Trace Processor
Portable C++ library: SQL engine for trace
analysis.

Efficient
Can ingest multi-GB / hours-long traces

SQL-powered
Based on industry standard SQLite engine

Interoperable
Runs on servers! Runs on Android! Runs in
the browser (via Web Assembly)!
Runs in other IDEs and tools.
Easy to embed in other apps and integrate with
ad-hoc perf test infrastructure

One trace
file

Custom
SQL

queries

Perfetto Trace Processor

Pre-baked
metricsor

CSV JSON Protobuf

SQL API
(powered by

SQLite)

Trace
parsing and
“massaging

”

Custom, in-
memory
columnar

tables

Start

Duration

TID

CPU

Built-in
metrics for

critical
Android and

Chrome
usecases

Feature highlights

TRACE_B(“SocketThread”); ts=100
…
TRACE_B(“Cleanup”); ts=151
DoCleanup();
TRACE_E(“Cleanup”); ts=155
…
TRACE_E(“SocketThread”); ts=160

slice
id ts dur depth

name
0 100 60 0

“SocketThread”
1 151 4 1

“Cleanup”

123.0 cpu_frequency: cpu=0
freq=1000
145.0 cpu_frequency: cpu=1
freq=4000
245.0 rss_stat: pid=40
value=512
345.0 gpu_frequency: cpu=0
freq=500

counter
ts track_name track_id

value
123 CPU Frequency 0

1000
145 CPU Frequency 1

4000
245 RSS Usage

2 512
345 CPU Frequency 0

500
123 sched_switch: p_pid=1 n_pid=2
end_s=S
233 sched_waking: pid=1
354 sched_switch: p_pid=2 n_pid=1
end_s=D

thread_state
ts dur pid state

123 110 2 Running
233 121 1 Runnable

354 NULL 1 Running

356 NULL 2 Uninterruptible
sleep

SPAN_JOIN
(span

intersection)

CREATE_FUNCTION
CREATE_VIEW_FUNCTI

ON

Define functions in
SQL! (demoed later)

ANCESTOR_SLICE
DESCENDENT_SLICE

S

S

Batch Trace Processor

Python API

Trace Processor
Shell

Trace
Processor

Why not …?
Why not work with
the trace directly?

Why not
C/C++/Python/<your
favourite language>

instead of SQL?

Why not expose trace
points directly instead

of slices/counters?
interned_data {
 id: 1
 string:
“loooong”
}
ftrace_event {
 string_iid: 1
}
my_custom_event {
 string_iid: 1
}
track_event {
 string_iid: 1
}
…

name
ts cpu pid

sched_switch 100
0 2

sched_switch 150
0 3

sched_waking 300
1 2

vs

state pid
ts dur
cpu

Running 2 100
50 0

Running 3 150
NULL 0

IO sleep 2 150
150 NULL

Runnable 2 300
NULL NULL

SELECT *
FROM slice
WHERE
 name LIKE ‘startup%’
AND
 dur > 100

In your chosen language:
● How much code would

this take?
● How natural would it

feel?
● How big would the

library API surface be?

App Startups
An important use-case for tracing on Android

Journey of an Android cold start

From a 2019 study go/startup-metrics. Most of this changed substantially in the last 2 years.

Startups in Perfetto traces

message StartupProto {

 optional string process_name = 1;

 optional int64 time_activity_start = 2;

 optional int64 time_activity_resume = 3;

 optional int64 time_choreographer = 4;

}

CREATE VIEW launching_slices AS

SELECT ts, ts_end, STR_SPLIT(name, ': ', 1) AS launched_package

FROM slice

WHERE name GLOB 'launching: *';

CREATE VIEW launching_processes AS

SELECT process.name

FROM process

JOIN launching_slices

ON process.name = launching_slices.launched_package;

...

CREATE VIEW launching_slices AS ...;

CREATE VIEW launching_processes AS ...;

SELECT CREATE_FUNCTION(

 ‘DUR_FOR_SLICE(process_name STRING, slice_glob STRING)’,

 ‘INT64’,

 ‘

 SELECT dur

 FROM thread_slice

 WHERE process_name = $process_name AND name GLOB $slice_glob

 ’

);

...

CREATE VIEW launching_slices AS ...;

CREATE VIEW launching_processes AS ...;

SELECT CREATE_FUNCTION(‘STARTUP_SLICE_DUR(...)’, ...);

CREATE VIEW startup_metric_output AS

SELECT StartupProto(

 'process_name', launching_processes.name,

 'time_activity_start', DUR_FOR_SLICE(name, 'activityStart*'),

 'time_activity_resume', DUR_FOR_SLICE(name, 'activityResume*'),

 'time_choreographer', DUR_FOR_SLICE(name, 'Choreographer#do*')

)

FROM launching_processes;

startup {

 process_name: "androidx.benchmark.integration.macrobenchmark.target"

 time_activity_start: 10.707813

 time_activity_resume: 11.126928

 time_choreographer: 21.174429

}

Local debugging
The entry path to trace analysis

Lab testing
Ensuring performance doesn’t regress over time

Commit
is

merged

…

Performance
tests and

benchmarks
run 50-100
times each

…

Metrics are
extracted from

each trace
using trace
processor

Per-trace
metrics are
aggregated
(e.g. max,
mean) to

“reduce” to per-
commit values

Field tracing
Solving the performance issues faced by real users

2021 | Confidential and Proprietary

Startup approach in one slide

Measure
startup

Measure what users see

Break down
the problem

space
In Critical User Journeys

Cold App Launch

Switch app

Return to launcher

…

Trigger trace
collection

When startup happens

Metrics

Analyze
traces Observe root

causes,
lot of manual work!

Scale up!
Write trace classifiers,
run them against the

corpus

Stack rank
GROUP BY root cause,
ORDER BY COUNT()

Fix top issues
Profit!

A
ctio

n

…
(x30000)

“Map”

uuid dur
slow_start_reason
0x1234 123 [Running]
0x4567 456 [IO, Locks]
…
…
…
…
…
…
…
…
… (x30000)
…
…
…
…
…
…
…
…
0x7890 789 [Scheduler]

“Reduce”

startup {
 dur: 123
 reason:
“Running”
}

startup {
 dur: 456
 reason: “IO”
 reason: “Locks”
}

startup {
 dur: 789
 reason:
“Scheduler”
}

App start from
icon

58% -> 21 %

Latest innovations
At the cutting edge of trace analysis

Perfetto UI / Trace
Processor

Pros:
● Power/

complexity
curve

● UI is visual
Cons:

● Single trace

Map-Reduce
Pipeline

Pros:
● Run on

thousands of
traces

● Full analysis
power

Cons:
● Very complex
● High iteration

cost

???
Pros:

● Fast iteration on
100-1000+
traces

● Full power of
trace processor

Cons:
● ???

Can we interactively query >1
trace?

Batch Trace Processor (BTP)

Jank Colab Example
(Googlers only -

sorry!)

http://go/jank-colab-example-tracing-summit
http://go/jank-colab-example-tracing-summit

Startup Colab Exam
ple

 (Googlers only -
sorry!)

http://go/startup-colab-example-tracing-summit
http://go/startup-colab-example-tracing-summit
http://go/jank-colab-example-tracing-summit

For docs, mailing list and Discord channel see

perfetto.dev

Thanks! Questions?

http://www.perfetto.dev/

	Slide 7
	Slide 8
	Slide 9
	Overview of Perfetto & trace processor Introducing the foundat
	What is Perfetto?
	Primary use-cases for Perfetto
	Trace Processor Portable C++ library: SQL engine for trace anal
	Feature highlights
	Slide 15
	Slide 16
	Slide 17
	Why not …?
	App Startups An important use-case for tracing on Android
	Journey of an Android cold start
	Startups in Perfetto traces
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Local debugging The entry path to trace analysis
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Lab testing Ensuring performance doesn’t regress over time
	Slide 35
	Slide 36
	Field tracing Solving the performance issues faced by real use
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Latest innovations At the cutting edge of trace analysis
	Can we interactively query >1 trace?
	Batch Trace Processor (BTP)
	Slide 47
	Slide 48
	Slide 49
	Thanks! Questions?

