
Background

•This is a technical talk for developers
• not official statements, product roadmap etc.

•I use Arm examples because it's what I know, but there
are often equivalents in other architectures

•Our challenges are not specific to any architecture:
• can we get insights from low-level hardware telemetry through

usable, architecture-agnostic tools, in a way that help end
users solve real performance problems in the real world?

• can we work together on common challenges e.g. tooling,
security, uncore, methodologies?

The visibility problem

•What’s going on?
•Kernel activity – e.g. performance-critical paths
•Userspace activity
•Interrupts
•Power management: DVFS, throttling, hotplug
•Microarchitectural events: cache, prefetch, the path to

memory…
•Use of system resources: memory, power

Software trace

•programmer-inserted (printf debugging)
• problem: no standard language mechanism

•compiler-inserted
• e.g. gcc -pg

•DBI: Pin, DynamoRIO: Dynamic binary instrumentation
• DynamoRIO: https://github.com/DynamoRIO/dynamorio

•dynamic
• ftrace, kprobes, libpatch

•hybrids
• predefined tracepoints, post-defined payload
• e.g. dtrace, ftrace, eBPF

https://github.com/DynamoRIO/dynamorio
https://en.wikipedia.org/wiki/DTrace

Software trace - what are its
limitations?
•The probe effect
•Instrumentation affects:

• Timing
• Cache / TLB contents
• PMU hardware events

•Difficult to go to the lowest levels
• interrupt-disabled code

•Heisenbugs may stop happening entirely
•May struggle with JIT

The ideal

• Just trace everything!
• Hardware emulator

• expensive

• Software simulation
• very very slow (~1000 cycles/s)
• it takes weeks to boot Linux

• One core is slow, never mind 128
cores

• Debugging wave files is hard…
• You need the source of the hardware…
• But… if you can isolate a specific

performance issue, *someone* will be
able to investigate at this level

picture sourced from internet, nothing
proprietary here…

Other visibility mechanisms
• PC / PMU sampling

• e.g. Arm Streamline, classic Linux perf
• limited visibility of program flow
• sampling IRQ-disabled code is difficult
• variety of hardware PMU events, many model-specific

• Architectural virtualization
• QEMU, Simics
• limited timing accuracy

• Architectural with cache/TLB/memory model
• DynamoRIO with drcachesim, QEMU with cache plugin

• Full system performance model
• gem5
• closer to accurate, but may lack architecture completeness
• research tool, not so good for analyzing production

workloads

Processor trace – hardware assisted

•Vendor-specific instruction trace
• Arm ETM/ETE
• Intel PT

•Highly compressed
•Direct branches indicated with a branch indicators: taken/not-

taken
• timing optional

•Full address output for indirect branches and exceptions
•To reconstruct control flow, you need the code image

• e.g. from ELF files, or copy of JIT code cache
• memory map information for dynamically loaded modules

Arm CoreSight – external capture

JTA
G

trac
e

DSTREA
M

Arm CoreSight - the old way

CPU #0 CPU #1

ETM ETM

Embedded
Trace
Buffer

Trace
Port
Interface
Unit

Software
Trace
Macrocell

AMBA Trace

Bus

AXI (and
RAM)

DAP 8K-
32K

Debug APB /
JTAG

Embedded
Trace
Router

~8Gbi
t/s

~100Mbyt
e/s

Embedded
Trace
Buffer

8K-
32K

Arm ETE/TRBE - the new way (ARMv9
onwards)

•Each CPU has an ETE trace unit
• essentially similar to ETM

•Trace is written by TRBE to virtual
memory

•Trace buffer context can be managed as
part of process/thread context

•Kernel's job becomes a lot easier

•No change to Linux perf tools
•Trace should become more ubiquitous

(but see comments on security later…)

CPU #0 CPU #1

ETE

TRBE

ETE

TRBE

system interconnect

memory

Processor trace – what’s it good for?

• Deep performance analysis
• deep, cycle accurate analysis of where time is spent in specific routines
• non-invasive, works for interrupt-disabled code

• Profiling and code coverage
• sample sequences of branches, similar to Intel LBR
• can be used with AutoFDO: https://github.com/google/autofdo

• Malware analysis
•https://www.vmray.com/blog/back-to-the-past-using-intels-p

rocessor-trace-for-enhanced-analysis/
• Fuzzing

• https://github.com/google/honggfuzz

• Post-mortem analysis
• set up trace in circular “flight recorder” buffer
• on crash, add trace buffer to crash dump file

https://github.com/google/autofdo
https://www.vmray.com/blog/back-to-the-past-using-intels-processor-trace-for-enhanced-analysis/
https://www.vmray.com/blog/back-to-the-past-using-intels-processor-trace-for-enhanced-analysis/
https://github.com/google/honggfuzz

Kernel critical path – two cores

Processor trace - how do I use it?

• In Linux this is now all handled by perf…
• perf record -e cs_etm// …

•Filters can be used to set address range or start/stop address
•Kernel will configure the trace sources
•Run the workload

• capturing sideband information as necessary, to reconstruct PC values

•Retrieve the trace
•Decode the trace using decode library e.g. OpenCSD

• need to know trace configuration - recorded in PERF_RECORD_AUXTRACE_INFO
• need program images or location of code in memory
• "perf inject" (build with libopencsd) can decode trace back into samples

•Feed the trace into something useful – visualization, analysis, AutoFDO…

Processor trace - decoding

• You will need
• the trace stream
• details of how the trace sources were configured
• images for kernel and program(s)
• Arm ETM/ETE decoder: https://github.com/Linaro/OpenCSD (BSD license)
• Intel PT decoder

• For dynamically changing address spaces you will also need sideband info
• PERF_RECORD_MMAP etc. for loading dynamic libraries
• PERF_RECORD_TEXT_POKE for kernel self-modifying code
• context switch

• No trace decoding in the kernel! Trace is decoded in userspace
• "perf inject" converts trace into branch records

• massively increases size of trace file, unless samping used

https://github.com/Linaro/OpenCSD/tree/arm-dev

Tracing hardware performance
events
• Instead of periodically sampling the counters, why not

trace the actual events as they occur?
• On Arm, PMU exports events to hardware trace

• events in JSON at https://github.com/ARM-software/data
• use the "trace_lsb" number

• Trace up to four bits per cycle
• multi-bit events: in ETM, appear as multiple bits, in ETE, are

OR-ed together

• Events are traced in Event packet, along with branches
• Some skew - events are not precisely located with

respect to instruction which caused them
• Finer-grained than counting, less intrusive than

sampling
• Not currently supported by Linux perf tools

• but can be enabled with the new "complex configurations"
feature

CPU

ETEPMU

even
ts

branch
es

counters

packe
ts

branch to 0x8000
branch taken
page table walk
event
branch not taken
…

https://github.com/ARM-software/data

[16] 0 0000ffffbad85450 910003fd MOV x29,sp | __kernel_clock_gettime+0x20
[16] 0 0000ffffbad85454 6a01001f TST w0,w1 | __kernel_clock_gettime+0x24
[16] TIME 750 cc=2 - Cycle Count: 2 (Timestamp packet (39))
[16] 0 0000ffffbad85458 540001c0 +B.EQ {pc}+0x38 ; 0xbad85490 | __kernel_clock_gettime+0x28
[16] 0 0000ffffbad85490 721b041f TST w0,#0x60 | __kernel_clock_gettime+0x60
[16] 0 0000ffffbad85494 54000260 +B.EQ {pc}+0x4c ; 0xbad854e0 | __kernel_clock_gettime+0x64
[16] TIME 751 cc=2 - Cycle Count: 2 (Timestamp packet (41))
[16] 0 0000ffffbad854e0 3627fce0 -TBZ w0,#4,{pc}-0x64 ; 0xbad8547c | __kernel_clock_gettime+0xb0
[16] 0 0000ffffbad854e4 aa0d03e2 MOV x2,x13 | __kernel_clock_gettime+0xb4
[16] 0 0000ffffbad854e8 2a0c03e1 MOV w1,w12 | __kernel_clock_gettime+0xb8
[16] 0 0000ffffbad854ec 10ff6020 ADR x0,{pc}-0x13fc ; 0xbad840f0 | __kernel_clock_gettime+0xbc
[16] 0 0000ffffbad854f0 97ffff88 +BL {pc}-0x1e0 ; 0xbad85310 | __kernel_clock_gettime+0xc0
[16] 0 0000ffffbad85310 8b21d001 ADD x1,x0,w1,SXTW #4 | <[vdso]>+0x310
[16] TIME 752 cc=2 - Cycle Count: 2 (Timestamp packet (43))
[16] 0 0000ffffbad85314 14000002 +B {pc}+8 ; 0xbad8531c | <[vdso]>+0x314
[16] events: ISB
[16] 0 0000ffffbad8531c b9400004 LDR w4,[x0,#0] | <[vdso]>+0x31c
[16] 0 0000ffffbad85320 3707ffc4 -TBNZ w4,#0,{pc}-8 ; 0xbad85318 | <[vdso]>+0x320
[16] 0 0000ffffbad85324 d50339bf DMB ISHLD | <[vdso]>+0x324
[16] 0 0000ffffbad85328 b9400403 LDR w3,[x0,#4] | <[vdso]>+0x328
[16] TIME 753 cc=2 - Cycle Count: 2 (Timestamp packet (45))
[16] 0 0000ffffbad8532c 34000063 +CBZ w3,{pc}+0xc ; 0xbad85338 | <[vdso]>+0x32c
[16] TIME 754 cc=11 - Cycle Count: 11 (Timestamp packet (56))
[16] 0 0000ffffbad85338 d5033fdf +ISB | <[vdso]>+0x338
[16] TIME 755 cc=32 - Cycle Count: 32 (Timestamp packet (88))
[16] events: ISB
[16] 0 0000ffffbad8533c d53be043 MRS x3,CNTVCT_EL0 | <[vdso]>+0x33c
[16] TIME 756 cc=12 - Cycle Count: 12 (Timestamp packet (100))
[16] 0 0000ffffbad85340 d5033fdf +ISB | <[vdso]>+0x340
[16] 0 0000ffffbad85344 f940040b LDR x11,[x0,#8] | <[vdso]>+0x344
[16] 0 0000ffffbad85348 f940142a LDR x10,[x1,#0x28] | <[vdso]>+0x348
[16] TIME 757 cc=21 - Cycle Count: 21 (Timestamp packet (121))
[16] 0 0000ffffbad8534c b7ffff23 -TBNZ x3,#63,{pc}-0x1c ; 0xbad85330 | <[vdso]>+0x34c

Statistical Profiling (Arm SPE)
• SPE is an optional feature of the Arm architecture from v8.2 onwards
• SPE traces samples of individual instructions, with detail for performance analysis
• SPE runs in the background: samples do not interrupt the running thread
• Samples are traced to memory, bypassing cache, but are coherent
• SPE sample records can include:

• timestamp
• precise instruction address
• instruction latency
• data virtual address
• data source information e.g. whether a load hit in L1, L2, other socket, DRAM…
• events e.g. L1 miss, branch mispredict, implementation-defined events

• SPE samples can be filtered:
• sample type e.g. load, store, branch
• minimum latency e.g. select only accesses >= 10 cycles
• events e.g. select only mispredicted branches

Target system

Arm SPE integration in Linux

System memory

Linux kernel

buffer

core

perf
subsystem

SPE

perf
record

buffer

core

SPE

buffer

core

SPE

buffer

core

SPE

gatord

perf_event_op
en()

Arm
Streamline

Using Arm SPE with Linux perf tools
• SPE appears as a new “PMU” (arm_spe) in the Linux perf subsystem
• This PMU can be discovered, and opened via perf_event_open()
• Kernel will allocate a buffer in system memory
• Kernel will program SPE filtering options to match user’s request
• Kernel will periodically collect data from the buffer
• SPE data is returned as an AUX buffer

• "perf record" can't use SPE and ETM at the same time. Not a
hardware or perf_event_open limitation.
• You can do "perf record -e arm_spe// -- perf record -e cs_etm// …"
• Are we testing the limits of perf and perf.data?

Using Arm SPE with Linux perf tools
• SPE can be accessed directly

• perf record -e arm_spe// -- ./bench

• SPE filtering options can be specified
• perf record -e arm_spe/load_filter=1,min_latency=10,ts_enable=1/ -- ./bench

• SPE data is captured as raw data in AUX records
• can be viewed with “perf record –D”
• data format is simple and easy to process: decode doesn’t need access to

program image
• although PC samples has the usual problem for JITted code

• SPE now supported in "perf mem" and "perf c2c"
• see ACME's "State of the Linux tracers" trace from Tuesday
• breakdown of which memory level loads were satisfied from, load latency etc.
• https://lore.kernel.org/lkml/20220530114036.3225544-1-leo.yan@linaro.org/

Architectural vs. implementation-specific
Architected Implementation-specific

CPU: functionality of instructions for any
given architecture feature.

CPU: which architecture features are
implemented - use ID registers to check (or
hwcaps in userspace).
Instruction timings.

Trace: trace format. Trace filtering
capabilities.

Trace: trace of speculative execution
In v8: all details of trace programming and
collection. PMU event number mappings to
trace event packets.
In v9: IRQ number for trace buffer overflow

PMU: architected events e.g. INST_RETIRED,
L1D_CACHE_REFILL.

PMU: implementation defined events. Exact
behavior of some architected events.
See https://github.com/ARM-software/data
Number of counters (it's usually 6, but not
always)

SPE: basic features. SPE: whether present or not.
IRQ number for SPE buffer overflow.
Additional imp def events. Meaning of "data
source".

Some “Offcore response” events Uncore PMU and other uncore telemetry and
topology

Heterogeneous systems (e.g. "big.LITTLE") will enforce consistency in some
areas but not others

https://github.com/ARM-software/data

Hardware trace: some challenges

• Security
• must not leak kernel data, other thread data, kernel address (break KASLR) etc. - side-

channel threats!

• Single use at a time
• PMU counters can be partitioned and time-multiplexed; other hardware features less so

• Virtualization
• security/stability/portability concerns: h/w telemetry missing from non-bare-metal instances
• KVM support for SPE and ETE/TRBE are work-in-progress; S2 translation faults complicate

things

• Software and tools
• how do we capture multiple streams of trace?
• how can UIs designed for event trace (microseconds), best handle instruction trace

(nanoseconds)?

• Variation between architectures and implementations
• Uncore even less standardized

	Background
	The visibility problem
	Software trace
	Software trace - what are its limitations?
	The ideal
	Other visibility mechanisms
	Processor trace – hardware assisted
	Arm CoreSight – external capture
	Arm CoreSight - the old way
	Arm ETE/TRBE - the new way (ARMv9 onwards)
	Processor trace – what’s it good for?
	Kernel critical path – two cores
	Processor trace - how do I use it?
	Processor trace - decoding
	Tracing hardware performance events
	Slide 66
	Statistical Profiling (Arm SPE)
	Arm SPE integration in Linux
	Using Arm SPE with Linux perf tools
	Using Arm SPE with Linux perf tools (2)
	Architectural vs. implementation-specific
	Hardware trace: some challenges

