
LTTng: Beyond
Ring-Buffer Based Tracing

Jérémie Galarneau (EfficiOS)
github.com/jgalar

Tracing Summit 2022
London, UK

11 October 2022
Photo by Ray Bilcliff

Tracing Summit 2022 2 / 26

Outline 1. What is LTTng?

2. Ring-buffer tracing and its limitations

3. Triggers

4. Aggregation maps

5. Future work

6. Questions

Tracing Summit 2022 3 / 26

What is LTTng?

Tracing Summit 2022 4 / 26

LTTng in
a nutshell

Open-source tracing framework
 First released in 2005
 Focused on system-wide introspection,

not just the kernel

Collection of projects
 LTTng-modules: kernel tracing
 LTTng-UST: user space tracing
 LTTng-tools: tracing control

Tracing Summit 2022 5 / 26

Design of
LTTng

Focused on low-intrusiveness

Both kernel and user space tracers use

per-CPU ring buffers
 Highly configurable

 Memory footprint
 Access permissions (per user/process)
 Accommodate real-time constraints

Tracing Summit 2022 6 / 26

Ring-buffer tracing and
its limitations

Tracing Summit 2022 7 / 26

Tracing is
cheap:

it can be
a problem

Instrumentation is almost free when not in use
 Can be added almost everywhere
 Low cost per-event when active: ~150 ns*

 Very easy to enable more events

than really needed

Most of LTTng features exist to mitigate this

* Xeon E5-2630; see benchmark references at the end for details

Tracing Summit 2022 8 / 26

Event
rules

Advanced filtering
 Wildcards, filter expressions, exclusions, log

level filtering, and more
 Filter expressions converted to bytecode,

interpreted at run time

Entirely dynamic
 No need to restart or reboot the kernel to

change the configuration

Tracing Summit 2022 9 / 26

Active
debugging

vs.
monitoring

Debugging
 Trace to file
 Network streaming
 Live sessions

Monitoring
 Flight recorder tracing (snapshot mode)

Best of both worlds
 Keep high-level trace over a long period
 Have a low-level trace of the

last few seconds available

Tracing Summit 2022 10 / 26

Limitations
of ring-buffer

tracing

Setup can be complex
 Managing huge traces in production

environments is quite a challenge
 Storing vs. processing in place

 How do we detect the problems?

User feedback
 Consuming traces implies a significant delay
 Instrumentation already provides the

information to detect issues

Tracing Summit 2022 11 / 26

Triggers

Tracing Summit 2022 12 / 26

Triggers

LTTng 2.10
2017

Small beginnings

A trigger associates a condition to an action

Narrow initial scope
 Monitor ring-buffer usage (low/high thresholds)
 Send a notification to an external application

Used to implement tracing traffic shaping
 Disable less important event rules when I/O

can't keep up

Tracing Summit 2022 13 / 26

Extended over time

New conditions
 Consumed size is greater than X bytes
 Ongoing session rotation
 Completed session rotation

Used to implement trace analysis pipelines
 Rotations are scheduled (on a time or size basis)
 External application notified of their availability

 Processed in-place, sent through a message queue,
or simply archived

Triggers

LTTng 2.11
2019

Tracing Summit 2022 14 / 26

Smart tracepoints

New “event rule matches” condition
 Triggers can now “fire” when

an event rule matches an event
 You can use existing instrumentation to react

quickly

New actions
 Start, stop, rotate, and record a snapshot
 Any combination thereof

Triggers

LTTng 2.13
2021

Tracing Summit 2022 15 / 26

Demo

Tracing Summit 2022 16 / 26

Not a replacement for ring-buffer
tracing!

Current use cases are low throughput
 Assume aggressive filtering at the source
 Cost of event rule triggers should be

nonsignificant to the application

For these use cases, latency is more
important than total throughput or
minimizing overhead

Triggers

Tracing Summit 2022 17 / 26

Memory overhead
 Bandwidth
 Space

Not free in terms of CPU time
(even though it's very efficient)
 Reading time and CPU number is expensive

on some architectures (no VDSO
implementation: requires full system calls)

Requires a post-processing step
to be useful

Other
limitations

of
ring-buffer

tracing

Tracing Summit 2022 18 / 26

Recording vs.
aggregation:

defining
priorities

[18:11:50.275355561] (+0.000000873) carbonara syscall_entry_recvmsg:
 { cpu_id = 5 }, { fd = 20, msg = 140676324897776, flags = 0 }
[18:11:50.275356143] (+0.000000582) carbonara kmem_kfree:
 { cpu_id = 5 }, { call_site = 0xFFFFFFFF94F5179D, ptr = 0x0 }
[18:11:50.275356397] (+0.000000254) carbonara syscall_exit_recvmsg:
 { cpu_id = 5 }, { ret = -11, msg = 140676324897776 }
[18:11:50.275358773] (+0.000002376) carbonara syscall_entry_recvmsg:
 { cpu_id = 5 }, { fd = 20, msg = 140676324897792, flags = 0 }
[18:11:50.275359412] (+0.000000639) carbonara kmem_kfree:
 { cpu_id = 5 }, { call_site = 0xFFFFFFFF94F5179D, ptr = 0x0 }
[18:11:50.275359733] (+0.000000321) carbonara syscall_exit_recvmsg:
 { cpu_id = 5 }, { ret = -11, msg = 140676324897792 }

Recording: exact recording, order
of events, precise timing, …

Tracing Summit 2022 19 / 26

Recording vs.
aggregation:

defining
priorities

+---+------------+----+----+
| key | val | uf | of |
+---+------------+----+----+
| syscall_entry_recvmsg | 3,404,391 | 0 | 0 |
+---+------------+----+----+
| kmem_kfree | 611,014 | 0 | 0 |
+---+------------+----+----+

Aggregation: simply count
occurrences of event rule matches

Tracing Summit 2022 20 / 26

Aggregation maps

Tracing Summit 2022 21 / 26

Introducing
aggregation

maps

LTTng 2.14
Est. 2022

Per-CPU arrays of counters
 Associate a key (string) to a value
 Configurable width (32/64 bits)
 Configurable size (number of counters)
 Indicates overflow

Not a new concept for kernel users

(BPF_MAP_TYPE_PERCPU_ARRAY)
 Available to the user space tracer too

Tracing Summit 2022 22 / 26

Performance As expected, a lot cheaper than
ring-buffer tracing

(Xeon E5-2630, see benchmark references at the end for details)

Method Time per event (ns) σ (stdev)

LTTng-UST ring-buffer (4 × 8 MiB) 158 0.222
LTTng-UST map 43.3 0.656

LTTng-modules ring-buffer (4 × 8 MiB) 151 0.824
LTTng-modules maps 44.8 0.219

eBPF per-CPU array 57.0 0.683

Tracing Summit 2022 23 / 26

Demo

Tracing Summit 2022 24 / 26

Future New operations
 Native histogram support
 Decrement value
 Use event payload
 Use event record size

Performance improvements
 Make LTTng-UST rseq()-aware
 Reduce impact of kernel mitigations

Tracing Summit 2022 25 / 26

Links
www.efficios.com

www.lttng.org

Tracing Summit 2022 26 / 26

Benchmark code:
www.github.com/jgalar/LinuxCon2022-Benchmarks

Photo by Lukas Kloeppel

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

