
Tracee: High Throughput of eBPF
Events for Execution Patterns

Detections

Rafael David Tinoco @rafaeldtinoco

Nadav Strahilevitz @NDStrahilevitz

Aqua Security

2

Quick Introduction about the Project

Tracee is a Runtime Security and Forensics tool for Linux. It uses
Linux eBPF technology to trace your system and applications at
runtime and analyzes collected events in order to detect
suspicious behavioral patterns.

https://aquasecurity.github.io/tracee/latest/

Tracee is composed of the following sub-projects, which are
hosted in the aquasecurity/tracee repository:

Tracee-eBPF Linux Tracing and Forensics using eBPF
Tracee-Rules Runtime Security Detection Engine

Project Author: Yaniv Agman (Tracee Team Leader)

3

4

5

FACTS TO CONSIDER

7

Facts to Consider

1.Old Kernels support (lack of eBPF enhancements)
2.eBPF program types and overhead
3.Doubled data copies over the pipeline
4.Resource consumption thresholds
5.Runtime vs Frequency:

1.Number of probes
2.Frequency probes are fired
3.How complex the probe handler is

8

Kernel Overhead – Runtime x Frequency

• Hook overhead = logic runtime * hook frequency
• In eBPF: we can measure overhead with bpftool prog show
• Average runtime = run_time_ns/run_cnt
• From experimentation: run_time_ns includes tail calls.

9

10

Kernel Overhead - Sys Enter  Sys Exit

• Tracee can track all running syscalls.
• Hooking sys_enter and sys_exit allows a view of all

syscalls, but they are very frequent calls.
• Initializing an event was done for every enter/exit

even if the syscall it's not needed.
• Other events require information on preceding

syscalls.
• Solution - Split the logic up to tail calls by need.
• Result: Significant overhead decrease.
• Caveat: Some events must declare some syscalls as

tail call dependencies.

Detect

• Get syscall_id

• Convert if 32bit

• Tailcall

Track

• Get associated task

• Store syscall info

• Tailcall

Submit

• Initialize event

• Get syscall info

• Submit to perf buffer

11

eBPF support, available helpers and overhead

• TC eBPF programs need interface attaching/detaching
• v5.2 cgroup eBPF programs LACK OF SUPPORT:

• cgroup/sock_release bpf_get_socket_cookie
• generic eBPF helpers (uid) bpf_sk_storage_get

• v5.3: added bounded loops support
• v5.5: added eBPF trampoline support (calling convention JIT)

• Fentry & Fexit (less overhead)
• v5.7: LSM

• Flow control (block access instead of killing PIDs)
• Avoid TOCTOU

• v5.9: socket lookup hook

Example of eBPF needed tricks to support older kernels

Example of eBPF needed tricks to support older kernels

THE PIPELINE

15

Concept: Producer:Consumer ratio

• Definition: the ratio of maximal sustained theoretical throughput
between a producer and a consumer.

• If the ratio is < 1, expect lost events due to a bottleneck.
• Note: Filtering makes measuring tricky because the producer

might not reach the consumer's maximum throughput.
• Note: Internally we use pprof flame graphs correlated with event

loss ratio and event throughput rates to gauge improvements.
As such this ratio is more of an intuitive tool.

16

Decoding, Sorting
and Caching Events

17

Decoding, Sorting
and Caching Events

18

Filtering – Reducing Throughput

• Critical step – reduces further processing down the pipeline and
rules engine

• Ideally done as early as possible
• Currently done in two steps:

Kernel (eBPF)
Less events submitted

Less kernel time overhead

More complex to implement

Used for global context

Userspace
Saves time for event polling

Easier to implement new
complex logic

Used for local event context
(args and struct)

19

Filtering – Userland Implementation

• Userland filtering reduces the producer:consumer ratio
between the event pipeline and the perf buffer.

• Currently supporting per event context filtering, return value filters
and argument filtering.

20

Filtering – Userspace Implementation

Key requirements (argument filtering):
1. Performance – Filtering cost < Filtering benefit.
2. Support all argument types – bypassed through string conversion.

Potential Solution: Hardcoding argument types and using Go 1.18
generics.

3. For strings – support equality, prefixes, suffixes and contain inputs
(possibly regex in the future).

Filtering – Userspace optimization

22

Filtering – Current limitations
and Potential Improvements

• Can't create parallel conflicting filter scopes.

Only one global filtering scope

• Non ideal method for maps and struct filtering.

• However, userland implementation allow an easier extension.

Limited argument type support

• This means derived event cannot be filtered easily.

Filtering happens before derivation

• Filtering in kernel could massively reduce initial throughput.

• Newer kernels might enable full implementation.

• Need to explore in older kernels.

Userland < Kernel Performance

23

Event Processing

Event Processing Categories
Logic Hooks

• Early in pipeline

• Performance impact is
workload dependent

• Example: cgroup
parsing

Event Enrichment

• Complexity of
enrichment varies

• Simple: Process Info
for network events

• Complex: Querying
Container Data

Event Derivation

• Create new events in
the pipeline

• Suspect to a lost event

• Finish up kernel logic
in userspace

• Example: Container
Created event

Argument Parsing

• Make event arguments
user readable

• Technically optional
but practically required

24

Container Enrichment - Challenges

1. Container detection is based on cgroup paths – parsing is pattern based.
2. Correlating container id with image and name is practically impossible in

the kernel.
3. Detecting runtimes on a system, multiple runtimes and nested runtimes

may exist.
4. Each container runtime has it's own quirks.
5. Container runtime interface requests are synchronous, our pipeline is not.

(note: event interfaces may not exist, and do not include container
annotations which we use for kubernetes awareness).

25

Container Enrichment - Non Blocking Architecture

26

Container Enrichment – Possible Alternatives

• Possibly the most efficient way

• Challenges:
1. Daemons are written in go – plan9 calling conventions
2. Parsing golang structs is less trivial than C
3. Golang doesn’t play nice with uprobes sometimes*

eBPF uprobes

• May reduce overhead of runtime requests

• Not every runtime has an event API (cri-o)

Merging with event APIs

*For more info on golang and eBPF uprobes see this article:
https://medium.com/bumble-tech/bpf-and-go-modern-forms-of-introspection-in-linux-6b9802682223

27

Derivation (Possible Delays): Symbols Loading

Shared Object Loaded
(Security Mmap File)

Symbols Loaded

eBPF event Userland Derived Event

Library Name

Host Symbols Loader

Container Symbols Loader

Path Resolver (Cont. to OS)

Load SO Symbols (ELF)

LRU map of all OS libraries loaded, and imported/exported symbols

Feature Credits: Alon Zivoni (Aqua Research)

28

Derivation (Context Savings): Kernel Hook Detections

Module •EVENT: Kernel module loaded

Integrity
Check

•Save EVENT for further needs

U-probed
Function

•Kick eBPF

eBPF
handler

Syscall
Table

•Check Syscalls handler
boundaries (kernel text
segment)

• Syscalls Table

• Same for “SeqNetOps” and “Proc File Operations” hooks
Feature Credits: Asaf Eitani & Itamar Maouda (Aqua Research)

29

Derivation (Raw Data Translation): Networking

30

Derivation (Raw Data Translation): Networking

31

Encoding/Decoding

• Tracee uses a named pipe to deliver events to the rule's engine.
• Byte encoding is required for this operation.
• Encoding and Decoding is the MOST significant bottleneck in tracee as

it affects the producer:consumer ratio of all critical parts.
• Current encoding: GOB.

32

Encoding/Decoding - Alternatives

• Practically tracee has only one requirement for its encoding method:
Type Safety across boundaries.

• Gob guarantees type safety but is not optimal enough.
• OOTB - most encodings don't keep the golang type info across boundaries

without modifications.
• Current alternatives seem to be:

1. Protocol Buffers – Code generation guarantees type info out of the box.
Caveat: Argument types are all over the place and must be hardcoded.

2. MessagePack – Almost works out of the box but loses type info
(int32 -> int8). Might work with modifications to code generation.

3. Flat Buffers – However map types do not have native support.
4. Roll your own.

• Our best option currently is to move our event definition to the protocol buffer format,
and hardcode our argument types, 1.18 generics seem to be a good option.

CONCLUSIONS

34

How to Solve or Address the Problem + Q/A

1. To use different eBPF programs (or set of programs) for older and newer
kernels, by designed feature.

2. To select carefully what to probe and implement fast-paths on each hook in
order to return as early as possible.

3. Multiple parallel in-kernel filter scopes are needed. Narrow each scope to
max amount of event arguments to produce less events.

4. Userland pre-process, context-saving and filtering will still have its place.
5. Events consumer can't block the pipeline, no matter what: enqueue and

defer (async) work.
6. Keep types over the pipeline (and in all event consumers). Protocol Buffers

unmarshalling, keeping specific kernel types (int -> uint8).

Thank you! Questions ?
Reach us at:

https://slack.aquasec.com
#tracee , #libbpfgo, #btfhub, #ebpf

Rafael David Tinoco @rafaeldtinoco

Nadav Strahilevitz @NDStrahilevitz

Aqua Security

https://slack.aquasec.com/

