Visual eBPF

Live Programming
Observability on Linux

@nbaksalyar « Tracing Summit 2022



Adventures in tracing

O

O

O

| want to dynamically observe the state of the system
Kernel knows everything
How to find the answers?

Recompiling the kernel it is not an option



eBPF to the rescue

O ...obviously!
o Part of the Linux kernel

© Dynamically attaching programs to trace points



Ways of using eBPF

o Writing your own programs using libbpf



Ways of using eBPF

o Writing your own programs using libbpf

O ...is notideal



Ways of using eBPF

o Writing your own programs using libbpf
O ...Is not ideal

o bpftrace: a simple scripting language



How bpftrace works

Attach to the scheduler and count the number of new processes:

tracepoint:sched:sched_process_fork

{
}

@ = count();



How bpftrace works

‘ a4 €BPF bytecode

v 4

eBPF maps

o B

‘ v It

4 Userspace code



Is it possible to improve bpftrace?

o Command-line tools are...
o Not interactive
o Not visual enough

o Limited by a single input method



Taking inspiration from databases

O

SQL is a domain-specific programming language
SQL is declarative
But SQL is for static data only

..orisit?



Streaming databases

o Apache Flink/Spark

o the streaming abstraction

O querying data in motion using COL
o s Linux kernel a database?

O |t can be!



Querying the kernel

Attach to the scheduler and count the number of new processes:

SELECT COUNT(*)
FROM "sched:sched process fork"

WHERE process name = "Python"



How is it different from bpftrace?

o Declarative thinking
© (an be translated into visual representation

o Visual programming!



Kernel probe

event

sched_process_fork

Y Filter

process_name = “python”

Display

S{ count(*) } process forks

4 process forks




Kernel probe

event sched_process_fork

Y Filter

process_name = “python”

Display

S{ count(*) } process forks

4 process forks




Kernel probe

event

sched_process_fork

Y Filter

process_name = “python”

Display

S{ count(*) } process forks

4 process forks




Kernel probe

event
Y Filter

process_name = “python”

rocess forks

4 process forks




Pros and Cons of visual programming

o Pros
o Gives immediate live feedback
o More intuitive user experience
o Cons
o Text is too ubiquitous and universal

o Complex programs can get messy



More advantages

o More ways of visualising data
o Easier to compose programs
© Combining multiple inputs

o Streaming to multiple outputs



Application-level tracing

event

HTTP request

User probe

function ‘Memory allocation

Y Filter

trace.endpoint = */login”

Write to log

S{ trace.span }: allocated S{ malloc size / 1000 } kB

file var/log/alloc.log




Application-level tracing

event HTTP request

Y Filter

Write to log




Application-level tracing {loar prahe

function Memory allocation

Y Filter

Write to log




Application-level tracing

Y Filter

trace.endpoint = “/login”

Write to log




Application-level tracing

Y Filter

Write to log

S{ trace.span }: allocated 5{ malloc.size / 1000 } kB

file /var/log/alloc.log




Display

S{ count(malloc) } allocations

19 memory allocations

Y Filter

trace.endpoint = */login”

Write to log

S{ trace.span }: allocated S{ malloc.size / 1000 } kB

file /var/log/alloc.log




Graph

count(malloc)

100
72
57
43
28

14
o

Y Filter

trace.endpoint = /login”

Write to log

S{ trace.span }: allocated S{ malloc.size / 1000 } kB ‘

file Ivar/log/alloc.log



How does it work?

Print @bpf_map

events_count = 0
Aggregate (Count)

@kernel_probe(“syscall”)

def event_handler(arg):
if {arg == 1):

Filter

events_count += 1
|—> Kernel probe



How does it work in userspace

o Datais EXChangEd through ring bUﬂ:erS (Thanks Andrii Nakryiko!)
o Sent directly to a web browser using WebSockets

o Lots of visualisation options



More can be done!

o LLVM IR can be compiled into WebAssembly
o |IDE-like capabilities
o Code completion (yay BTF and CO-RE!)
o Snippets/patterns

o Optimisations techniques borrowed from DBs



More can be done!

o LLVM IR can be compiled into WebAssembly
o |IDE-like capabilities
o Code completion (yay BTF and CO-RE!)
o Snippets/patterns

o Optimisations techniques borrowed from DBs



Conclusion

o Linux is a kind of a database!
o Bringing visual programming into tracing world
o Visualisation can improve developers experience

© QOpen source on Github:

https://github.com/nbaksalyar/metalens



	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

