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Adventures in tracing

O

O

O

| want to dynamically observe the state of the system
Kernel knows everything
How to find the answers?

Recompiling the kernel it is not an option



eBPF to the rescue

O ...obviously!
o Part of the Linux kernel

© Dynamically attaching programs to trace points



Ways of using eBPF

o Writing your own programs using libbpf
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Ways of using eBPF

o Writing your own programs using libbpf
O ...Is not ideal

o bpftrace: a simple scripting language



How bpftrace works

Attach to the scheduler and count the number of new processes:

tracepoint:sched:sched_process_fork

{
}

@ = count();
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Is it possible to improve bpftrace?

o Command-line tools are...
o Not interactive
o Not visual enough

o Limited by a single input method



Taking inspiration from databases

O

SQL is a domain-specific programming language
SQL is declarative
But SQL is for static data only

..orisit?



Streaming databases

o Apache Flink/Spark

o the streaming abstraction

O querying data in motion using COL
o s Linux kernel a database?

O |t can be!



Querying the kernel

Attach to the scheduler and count the number of new processes:

SELECT COUNT(*)
FROM "sched:sched process fork"

WHERE process name = "Python"



How is it different from bpftrace?

o Declarative thinking
© (an be translated into visual representation

o Visual programming!



Kernel probe

event

sched_process_fork

Y Filter

process_name = “python”

Display

S{ count(*) } process forks

4 process forks
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Kernel probe

event
Y Filter

process_name = “python”

rocess forks

4 process forks




Pros and Cons of visual programming

o Pros
o Gives immediate live feedback
o More intuitive user experience
o Cons
o Text is too ubiquitous and universal

o Complex programs can get messy



More advantages

o More ways of visualising data
o Easier to compose programs
© Combining multiple inputs

o Streaming to multiple outputs



Application-level tracing

event

HTTP request

User probe

function ‘Memory allocation

Y Filter

trace.endpoint = */login”

Write to log

S{ trace.span }: allocated S{ malloc size / 1000 } kB

file var/log/alloc.log
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Application-level tracing

Y Filter

trace.endpoint = “/login”

Write to log




Application-level tracing

Y Filter

Write to log

S{ trace.span }: allocated 5{ malloc.size / 1000 } kB

file /var/log/alloc.log




Display

S{ count(malloc) } allocations

19 memory allocations

Y Filter

trace.endpoint = */login”

Write to log

S{ trace.span }: allocated S{ malloc.size / 1000 } kB

file /var/log/alloc.log




Graph

count(malloc)
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Y Filter

trace.endpoint = /login”

Write to log

S{ trace.span }: allocated S{ malloc.size / 1000 } kB ‘

file Ivar/log/alloc.log



How does it work?

Print @bpf_map

events_count = 0
Aggregate (Count)

@kernel_probe(“syscall”)

def event_handler(arg):
if {arg == 1):

Filter

events_count += 1
|—> Kernel probe



How does it work in userspace

o Datais EXChangEd through ring bUﬂ:erS (Thanks Andrii Nakryiko!)
o Sent directly to a web browser using WebSockets

o Lots of visualisation options



More can be done!

o LLVM IR can be compiled into WebAssembly
o |IDE-like capabilities
o Code completion (yay BTF and CO-RE!)
o Snippets/patterns

o Optimisations techniques borrowed from DBs
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Conclusion

o Linux is a kind of a database!
o Bringing visual programming into tracing world
o Visualisation can improve developers experience

© QOpen source on Github:

https://github.com/nbaksalyar/metalens
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