
Collecting telemetry data from
low latency microservices

Eya-Tom Augustin SANGAM

Dorsal Lab, Polytechnique Montréal

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

Agenda
● About me and DORSAL

● Context, goals and considerations

● Related work

● Proposed solution

● Benchmarks

● Future work

● Conclusion

2

About me and
DORSAL

3

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

About me
● Masters student in DORSAL lab under Prof. Michel Dagenais supervision

○ DORSAL stands for Distributed Open Reliable Systems Analysis Lab

● Located in the Computer and Software Engineering Department at Polytechnique Montreal in Canada

4

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

About DORSAL
● Research in collaboration with Ericsson, Ciena, AMD, EfficiOS and others about:

○ Monitoring and Debugging of High Performance Distributed Heterogeneous Systems

○ Dynamic instrumentation (uftrace, LTTng, libpatch), hardware tracing

○ GPU tracing, profiling and debugging (ROCm, ROCgdb and Theia TraceCompass)

○ Runtime verification (lower overhead alternatives to ASan and TSan)

○ Scalable trace analysis and visualisation (parallel Theia Trace compass extension)

○ Trace analysis with Machine Learning (Trace Compass)

5

Context,
goals and
considerations

6

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● We have C microservices communicating with

each other using ZeroMQ

● We want to collect telemetry data (TD) :

○ Host metrics (CPU usage, RAM usage, …)

○ Application logs

○ Application metrics (queue size, request

duration, …)

○ Distributed requests (aka tracing spans)

Context and goals

7

Example of span

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● We want to do cross-hosts TD analysis

○ We need to bring some TD together at some point

● Some hosts have limited hard drive storage

○ A filtering mechanism is required to minimize the amount of data saved on the disk

○ e.g., we should be able to decide at runtime whether we want to save heartbeat

traces or not

Considerations

8

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Some applications run on hosts with limited resources

○ Installing any agent or observability backend may highly affect the application

behaviour

● Live monitoring is desired but not required.

Considerations

9

Related work

10

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Open source tracing framework for Linux

● LTTng is well suited for tracing low latency programs

Related work: LTTng/LTTng-UST

11

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● LTTng can help collect host metrics (CPU, RAM, Network usage, …)

● We capture only necessary events

○ e.g. sched_switch to be able to compute CPU usage

● Big advantage of LTTng and LTTng-UST : We can modify recording rules at runtime

Related work: LTTng and host metrics

12

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● To collect spans we need to log a message at beginning and end of an operation

● Problem : We need to agree on how trace ids are generated, how the trace contexts are

propagated to other microservices, ….

Related work: LTTng-UST and spans

13

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● To collect metrics we can log all metrics variations to LTTng

● During analysis phase, we can aggregate all those variations across all the hosts

● Problem : We need to add more logic to support

○ Synchronous counters: counters invoked inline with application/business

processing logic

○ Asynchronous counters: counters modified on demand (e.g. every 30s)

○ Histograms

○ Standardize schemas for the data collected

Related work: LTTng-UST and app metrics

14

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● LTTng and LTTng-UST are a good start point, but they do not solve all our problems

● We need to define a protocol over the standard LTTng-UST, to help us collect, aggregate

and structure the data we collect

○ Here comes the OpenTelemetry specification

Related work: LTTng/LTTng-UST verdict

15

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● OpenTelemetry (OTel) is becoming the industry standard for creating and collecting TD

● OTel specification describes cross-language requirements and expectations for all OTel

implementations

○ It defines how and what TD should be collected, processed and sent

○ Standardizes TD schemas

○ Gives a reference implementation in most common languages (C++, Java, C#,

Python …)

Related work: OpenTelemetry

16

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Many telemetry backend/visualisation tools like Jaeger or Prometheus support OTel data schemas
out of the box

● OTel created the OTel Collector which is a vendor-agnostic way to receive, process and export TD

Related work: OpenTelemetry

17

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Protobuf definition of a Span:

Related work: OpenTelemetry

18

Span protobuf definition from
https://github.com/open-telemetry/opentelemetry-proto/blob/d1468b7700309cec0a3fdfffbfba4e8
4acf94072/opentelemetry/proto/trace/v1/trace.proto

https://github.com/open-telemetry/opentelemetry-proto/blob/d1468b7700309cec0a3fdfffbfba4e84acf94072/opentelemetry/proto/trace/v1/trace.proto
https://github.com/open-telemetry/opentelemetry-proto/blob/d1468b7700309cec0a3fdfffbfba4e84acf94072/opentelemetry/proto/trace/v1/trace.proto

Combining LTTng and
OpenTelemetry

19

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

Different ways of collecting TD and moving
them around

20

Different ways of collecting
TD and moving them around

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

Using proprietary instrumentation

21

Collecting TD using proprietary instrumentation

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

Using Opentelemetry instrumentation

22

Collecting TD using Opentelemetry instrumentation

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

Combining LTTng and OpenTelemetry

23

● OTLP = OpenTelemetry Protocol (OTLP)

● OTLP describes the encoding,
transport, and delivery mechanism of
telemetry data between telemetry
sources, intermediate nodes such as
collectors and telemetry backends.

● Data are protobufs

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

Combining LTTng and OpenTelemetry

24

LTTng
● OTLP = OpenTelemetry Protocol (OTLP)

● OTLP describes the encoding,
transport, and delivery mechanism of
telemetry data between telemetry
sources, intermediate nodes such as
collectors and telemetry backends.

● Data are protobufs

Proposed solution

25

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Combine both OpenTelemetry and LTTng

● Two phases

○ Online phase : TD collection, when application

runs

○ Offline phase : Analysis, later on

Proposed solution

26

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

Online phase

(When application runs)

● LTTng is used to collect host metrics

● We use OTel to instrument the application

● TD generated (Protobufs binary data) is logged to

LTTng-UST and saved in CTF (Common Trace

Format) files

○ We can control what runtime data we save this

way

Proposed solution

27

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

Offline phase

(Only when we want to do analysis)

● CTF files are copied from the host

● Host metrics could be viewed in Trace Compass

directly

● The OTel Replay System reads TD and sends them to

the OTel collector which will send them later to

observability backends (Jaeger, Prometheus, etc.)

Proposed solution

28

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Otel C wrapper

○ Wrapper around the official C++ OpenTelemetry client

○ Code: https://github.com/dorsal-lab/opentelemetry-c

Source code

29

https://github.com/dorsal-lab/opentelemetry-c

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Simple ZeroMQ client, proxy and server application traced using opentelemetry-c

Source code

30

Code: https://github.com/dorsal-lab/opentelemetry-c-demo

https://github.com/dorsal-lab/opentelemetry-c-demo

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● OTel Replay System which reads the telemetry data and sends them to the OTel collector

which will send them later to observability backends (Jaeger, Prometheus, etc.)

○ Code: https://github.com/dorsal-lab/opentelemetry-c-replayer

Source code

31

https://github.com/dorsal-lab/opentelemetry-c-replayer

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Benchmarks

○ https://github.com/dorsal-lab/opentelemetry-c-performance

○ Deep dive doc

Source code

32

https://github.com/dorsal-lab/opentelemetry-c-performance
https://github.com/dorsal-lab/opentelemetry-c-performance/blob/main/LTTng%20%2B%20OpenTelemetry%20Benchmarks.pdf

Benchmarks

33

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Scenario : Start a span and end it right away. Measure the time to do the operation.

● Multiple configurations tested :

○ LTTng configuration: No LTTng session running, LTTng session without recording, LTTng

session recording UST telemetry data, LTTng remote session recording UST telemetry

data

○ Type of instrumentation: No instrumentation, OpenTelemetry

○ Type of exporter: LTTng Exporter, Local OTel collector, Remote OTel collector

○ OTel Traces Processor (applies only for traces benchmarks): Simple, Batching processor

Trace benchmarks

34

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

Exporting spans one by one as they are created using remote OTel collector VS using Local Lttng

exporter VS Exporting one by one to remote LTTng

Trace benchmarks : Simple Span Processor

35

Remote OTel
collector

Local LTTng
session

Remote LTTng
session

n spans 500 20,000 20,000

min (ns) 1,931,562 94,947 61,689

mean (ns) 2,945,936 288,689 287,596

max (ns) 15,251,23 957,472 1,512,586

median (ns) 2,796,951 305,975 283,274

std (ns) 478,621 22,681 23,003

real (ms) 65,391 208,483 208,473

user (ms) 8,079 6,029 5,969

sys (ms) 369 407 461

● When using simple processor,

spans are processed

synchronously after their creation.

● In this situation, using LTTng to log

spans should be preferred over

sending traces over the network .

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

Same comparison but we export traces every 5s in batches of a maximum of 512 spans in a

background thread .

Trace benchmarks : Batching Processor

36

Remote OTel
collector

Local LTTng
session

Remote LTTng
session

n spans 20,000 20,000 20,000

min (ns) 21,101 23,063 43,641

mean (ns) 116,657 117,143 116,836

max (ns) 455,129 536,921 396,297

median (ns) 117,134 113,691 131,189

std (ns) 9,668 9,394 9,482

real (ms) 204,911 205,077 205,048

user (ms) 3,663 3,259 3,268

sys (ms) 330 405 379

● Using LTTng reduce the overall CPU time
used

● In production, the remote collector could be
in a different network, which could make
these results vary

● The preferred solution should be logging all
traces locally to LTTng. This avoids running
an OTel collector and dealing with all the
network communications troubles it could
add

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Pattern : export spans back to back for 1 minute without sleeping

● We use the Batching Span processor and export at most 512 spans per batch

● OTel ring buffers accepts up to 2048 spans. Pass that limit, old spans are overwritten

● Table format : Number of spans successfully exported / number of spans created

Trace benchmarks : Flooding OTel ring buffers

37

Exporting to remote OTel collector Exporting to local LTTng session Exporting to remote LTTng session

Simple Span Processor 29,275 / 29,275 1,569,145 / 1,569,145 1,546,970 / 1,546,970

Batching Span Processor
222,219 / 7,418,929

(97% loss rate)
2,863,534 / 7,829,110

(64% loss rate)
2,757,642 / 7,551,265

(64% loss rate)

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Pattern: We measure the time to do an operation without collecting any kind of metrics. And

we repeat the same operation while exporting metrics every 500/1000 ms

● Comparison: No instrumentation VS exporting metrics to a remote Otel collector VS exporting

metrics to a local LTTng session VS exporting metrics to a remote LTTng session

Metrics benchmarks

38

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

Metrics benchmarks

39

No instrumentation
Exporting to remote OTel

collector
Exporting to local LTTng

session
Exporting to remote LTTng

session

Export delay
(ms)

500 1000 500 1000 500 1000 500 1000

duration
(ms)

114,541 114,539 115,290 115,030 114,712 114,681 114,649 114,572

overhead
(%)

- - 0.654 0.656 0.149 0.151 0.094 0.096

cpu time
(ms)

114,537 114,535 115,816 115,348 114,836 114,749 114,776 114,650

cpu time
overhead (%)

- - 1.116 0.71 0.261 0.187 0.208 0.1

● For all configurations, the execution time overhead is less than 1.2% and the larger the export interval, the lower the
overhead.

● LTTng Metrics exporter is approximatively 50% faster than the remote exporter but the CPU time spent in user
space is similar for the two configurations.

Future work

40

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● Analyse OTel userspace traces directly in

Tracecompass without having to use any

telemetry backend

○ Add new Spans Life Analysis: Support

OTel schemas, trace synchronisation

and add filtering capabilities

○ Add a Metrics View: Add counters view

and support basic query language (e.g.

metric1 + metric2)

Future work

41

Conclusion

42

Collecting telemetry data from low latency microservices - Eya-Tom Augustin SANGAM, DORSAL Lab

● We proposed a strategy of collecting telemetry data from low latency microservices

● We benefit both from OpenTelemetry specification standards and LTTng speed and

filtering capabilities

● Total overhead of our solution is lower than another one using OpenTelemetry for both

collecting and exporting telemetry data

Conclusion

43

Thanks !
Questions ?

44

