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About DORSAL

Research Areas

• Monitoring and Debugging of High Performance Distributed Heterogeneous Systems

• GPU Tracing and Profiling

• Scalable Trace Analysis and Visualization

• Low-overhead Runtime Verification

• Machine Learning-Powered Trace Analysis
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ThreadMonitor (TMon)

Post-mortem data race detector for C/C++ programs that use pthreads

• Traces the required runtime information for data race detection using Intel Processor Trace (Intel PT)

• Uses the trace data to emulate the same runtime verification performed by ThreadSanitizer (TSan)

• No direct impact on application memory usage

• Very low runtime overhead

Project Introduction
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Introduction
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Introduction: What Is a Data Race?

In Multithreaded Programs

• Threads typically share access to the application memory

• Shared memory enables efficient thread communication

• But also exposes a multithreaded program to data races

1. Two threads access the same memory location without a timing constraint

• Synchronization

• Mutual exclusion

2. At least one of the accesses is a write operation
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Introduction: What Is a Data Race?

Example

• Two threads write to the shared variable Global

• No timing constraint ordering them, therefore a data race

• A concurrency error unless the resulting non-determinism is a design choice

tiny_race.c [1]

int Global;

void *Thread1(void *x) {

Global = 42;

return x;

}

int main() {

pthread_t t;

pthread_create(&t, NULL, 

Thread1, NULL);

Global = 43;

pthread_join(t, NULL);

return 0;

}

[1] https://clang.llvm.org/docs/ThreadSanitizer.html
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Motivation
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Motivation: Need for Automated Data Race Detection

Detecting data races can be extremely challenging for programmers

1. Ensure each access to shared memory follows proper timing constraints

• Significantly complicated, even for a relatively simple project

2. Only particular thread interleavings may lead to the corruption of shared data

• Possible to miss a data race even with comprehensive testing

• A corrupted shared variable may not result in immediate failure
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Motivation: Why a New Tool?

State-of-the-art tools cause considerable runtime and memory overhead!

• ThreadSanitizer (TSan)

• Slowdown: 5×-15× & Memory overhead: 5×-10×

• Helgrind

• Slowdown: 100× & Memory overhead: 20×

Cannot be used in many real-world testing scenarios!

• Some of our industrial partners cannot afford such overheads
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Methodology
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Methodology: Main Idea

ThreadMonitor (TMon)

A data race detector capable of performing the same analysis as TSan, but with very low-overhead

A postmortem tool

• Traces a program execution using Intel PT (ptwrite packets)

• Very low overhead

• Processes the trace data to determine whether the traced execution exhibited data races

• No data race detection analysis at runtime

No direct impact on application memory usage, very low runtime overhead
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A hardware feature that logs information about software execution with minimal impact

Facilities used by TMon:

1. PTWRITE (PTW) packet

• User-generated 64-bit payload

• PTWRITE r64/m64 instruction

• Sends the value of the operand passed to it to PT hardware to be encoded in a PTW packet

• Previously introduced in Atom, now available in Alder Lake (12th generation)

• Very low overhead (only 2 CPU cycles on our machine)

2. Metadata

• Thread/Process IDs

Methodology: Intel Processor Trace (PT)
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Methodology: Architecture

What to Trace?

The same program events tracked by TSan

• The same runtime information captured by TSan for each event

How to Trace?

Instrument each event of interest with a ptwrite instruction

• Most significant byte of its payload indicates the event type (less than 255 event types)

• Remaining seven bytes store the required runtime information to analyze that event

Three Main Components of TMon:

1. Compile-time Instrumentation of User Code

• Instrumenting memory accesses in user code (similar to TSan)

2. Intercepting Specific Library Functions

• Library functions related to imposing timing constraints among threads, or accessing 

memory (similar to TSan)

3. Postmortem Analyzer

• Analyzes the trace data
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Implementation
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Implementation: Compile-time Instrumentation of User Code
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Compile-time instrumentation at LLVM IR level

• Function pass

• Identify and instrument various types of memory accesses within user code

• Instrumenting function entry and exit points if necessary

Main parts:

1. Assessing Instrumentation Eligibility of a Function

2. Function Traversal

3. Instrumenting Non-atomic Memory Accesses

4. Instrumenting Atomic Memory Operations

5. Instrumenting Function Entry and Exit
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Implementation: Compile-time Instrumentation of User Code
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1. Assessing Instrumentation Eligibility of a Function

Subject to instrumentation exemption if the function possesses either of the following attributes:

• Naked

• Indicates the absence of standard prologue and epilogue sequences

• Unable to instrument function entry and exit points

• Similar to TSan

• DisableTMonInstrumentation

• Designed to provide programmers with the flexibility to selectively leave certain functions 

uninstrumented

• TSan provides a similar function attribute
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Implementation: Compile-time Instrumentation of User Code
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2. Function Traversal

Once qualified for instrumentation, the pass traverses the function to identify the instructions engaged 

in accessing memory.

• TMon targets the same set of instructions as TSan

• Non-atomic memory accesses

• Atomic memory operations

• TSan detects three redundancy cases in non-atomic accesses

1. Read-before-write happening within the same basic block, with no calls occurring between them

• The read instruction can be safely excluded from instrumentation

• The write instruction is marked as a compound access

2. Reading an address that points to constant data

3. Access addressable variables that are not captured

• Such variables cannot be referenced from a different thread

• TMon employs the same redundancy analysis, thereby instruments exactly the same instructions as TSan
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Implementation: Compile-time Instrumentation of User Code
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3. Instrumenting Non-atomic Memory Accesses

TSan inserts a call to a specialized runtime library function immediately before the access occurs.

• The data race detection logic requires to obtain six properties pertaining to each non-atomic access

1. Access type (read or write)

2. Access size (supports access sizes of 1, 2, 4, 8, and 16 bytes)

3. Whether aligned

4. Whether a compound access

5. Whether accesses a volatile memory location

6. Accessed address

• The first five properties contribute to a total of 50 distinct types of non-atomic accesses.

• TSan encodes these five properties by employing a dedicated instrumentation function for each specific case.

• __tsan_read1() is used to instrument non-volatile read operations of size one byte

• The last property (accessed address) is passed to the corresponding instrumentation function.
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Implementation: Compile-time Instrumentation of User Code
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3. Instrumenting Non-atomic Memory Accesses (Cont.)

TMon inserts a single ptwrite instruction immediately before the access occurs.

• Supports the same 50 different types of non-atomic memory accesses

• Traces the same six properties for each access

• The most significant byte of the payload cumulatively encodes the first five properties

• Allocating 50 unique values

• Each exclusively associated with one of the 50 instrumentation functions employed by TSan

• The six least significant bytes of the payload store the accessed address

• Enabling its postmortem analyzer to apply the same data race detection logic implemented in the 

TSan runtime for analyzing non-atomic accesses
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Implementation: Compile-time Instrumentation of User Code
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4. Instrumenting Atomic Memory Operations

TSan inserts a call to a specialized runtime library function immediately preceding the occurrence 

of the atomic operation.

• The data race detection logic requires to obtain three properties pertaining to each atomic operation

1. Operation type (atomic load, atomic store, atomic read-modify-write (RMW), and 

atomic compare-and-swap (CAS))

2. Access size (supports access sizes of 1, 2, 4, 8, and 16 bytes)

3. Accessed address

• The first two properties contribute to a total of 20 distinct types of atomic operations.

• Encodes these two properties by employing a dedicated instrumentation function for each specific case.

• __tsan_atomic8_load() is used to instrument atomic load operations of size 8 bits

• The last property (accessed address) is passed to the corresponding instrumentation function.
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Implementation: Compile-time Instrumentation of User Code
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4. Instrumenting Atomic Memory Operations (Cont.)

TMon inserts a single ptwrite instruction immediately before the atomic operation occurs.

• Supports the same 20 different types of atomic operations

• Traces the same three properties for each operation

• The most significant byte of the payload cumulatively encodes the first two properties

• Allocating 20 unique values

• The six least significant bytes of the payload store the accessed address

• Enabling its postmortem analyzer to apply the same data race detection logic implemented 

in the TSan runtime for analyzing atomic operations
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Implementation: Compile-time Instrumentation of User Code
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5. Instrumenting Function Entry and Exit

TSan instruments entry and exit points of a function if it contains instrumented memory accesses.

• Preserve a precise stack trace for every access (used in data race reports)

• Entry: inserts a call to __tsan_func_entry()with the return address of the current function passed to it

• Exit: marks a function exit by invoking __tsan_func_exit()

TMon follows the same behavior.

• Entry: inserts a single ptwrite instruction

• The most significant byte of the payload serves as an indicator for a function entry event

• The six least significant bytes store the return address of the current function

• Exit: inserts a single ptwrite instruction

• The most significant byte of the payload serves as an indicator for a function entry event
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define dso_local ptr @Thread1(ptr noundef %x) {

entry:

%0 = call ptr @llvm.returnaddress(i32 0)

%1 = ptrtoint ptr %0 to i64

%ptw.funcentry = or i64 %1, 72057594037927936

call void asm "ptwriteq $0", "rm"(i64 %ptw.funcentry)

...

call void asm "ptwriteq $0", "rm"(i64 or (i64 ptrtoint (ptr @Global to i64), i64 864691128455135232))

store i32 42, ptr @Global, align 4

...

call void asm "ptwriteq $0", "rm"(i64 144115188075855872)

ret ...

}

define dso_local i32 @main() {

entry:

%0 = call ptr @llvm.returnaddress(i32 0)

%1 = ptrtoint ptr %0 to i64

%ptw.funcentry = or i64 %1, 72057594037927936

call void asm "ptwriteq $0", "rm"(i64 %ptw.funcentry)

...

%t = alloca i64, align 8

...

call void asm "ptwriteq $0", "rm"(i64 or (i64 ptrtoint (ptr @Global to i64), i64 864691128455135232))

store i32 43, ptr @Global, align 4

%2 = ptrtoint ptr %t to i64

%ptw.rw = or i64 %2, 576460752303423488

call void asm "ptwriteq $0", "rm"(i64 %ptw.rw)

%3 = load i64, ptr %t, align 8

...

call void asm "ptwriteq $0", "rm"(i64 or (i64 ptrtoint (ptr @Global to i64), i64 504403158265495552))

%4 = load i32, ptr @Global, align 4

call void asm "ptwriteq $0", "rm"(i64 144115188075855872)

ret ...

}

tiny_race_tsan.ll

tiny_race_tmon.ll

define dso_local ptr @Thread1(ptr noundef %x) {

entry:

%0 = call ptr @llvm.returnaddress(i32 0)

call void @__tsan_func_entry(ptr %0)

...

call void @__tsan_write4(ptr @Global)

store i32 42, ptr @Global, align 4

...

call void @__tsan_func_exit()

ret ...

}

define dso_local i32 @main() {

entry:

%0 = call ptr @llvm.returnaddress(i32 0)

call void @__tsan_func_entry(ptr %0)

...

%t = alloca i64, align 8

...

call void @__tsan_write4(ptr @Global)

store i32 43, ptr @Global, align 4

call void @__tsan_read8(ptr %t)

%1 = load i64, ptr %t, align 8

...

call void @__tsan_read4(ptr @Global)

%2 = load i32, ptr @Global, align 4

call void @__tsan_func_exit(),

ret ...

}

Inline assembly, not a function call!

Implementation: Compile-time Instrumentation of User Code

Example: TMon vs. TSan
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Implementation: Intercepting Specific Library Functions
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TSan intercepts common library functions that impose a timing constraint or access memory.

• Most importantly pthread functions

• Highly integrated with the internal race detection logic

• Defined as a static/shared library (depending on the compiler)

int __interceptor_function(...) {

// Call the actual function.

res = REAL(function)(...);

// Update the status of the race detection logic.

...

return res;

}
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Implementation: Intercepting Specific Library Functions
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TMon employs interceptors as well.

• No race detection analysis at runtime despite TSan interceptors

• Meant to record required runtime information using a ptwrite packet

• Depends on the function being intercepted

• Generally: some attribute passed to it and the return value

• Symbol interposition to redirect such function calls to its own implementation

• __tmon_interceptor_function has a weak alias of the same name as the intercepted function

• Defined as a static library

void tmon_interceptor_function() {

// Call the actual function.

res = REAL(function)(...);

// Record the required runtime information.

asm volatile ("ptwrite %0"...);

}
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Implementation: Postmortem Analyzer
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Processes the trace data to determine whether the program execution exhibited data races.

• Reconstructs the sequence of program events

• Using the information encoded within the ptwrite packets and the associated metadata

Builds upon the data race detection logic used by TSan (reuses parts of TSan RTL)

• Happens-before based algorithm

• Based on the happened-before relation proposed by Lamport

Enhancing its coverage through the introduction of novel algorithmic contributions
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Implementation: Postmortem Analyzer
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Mitigating Data Race Loss in TSan

TSan uses shadow cells to keep track of memory accesses.

• Every consecutive eight bytes of application memory are mapped to four shadow cells

• Each shadow cell encodes an access to the associated application memory region

• Upon detecting a new memory access, it is compared with prior conflicting accesses encoded by shadow cells

• A notable factor contributing to data race loss in TSan is the necessity to overwrite shadow cells due to their 

limited quantity

• TSan uses a random selection strategy to overwrite shadow cells

TMon employs a postmortem adaptation of the shadow cell paradigm, but proposes a refined approach.

• Allocating More Shadow Cells

• Reduces the need to overwrite shadow cells

• Better Overwriting Policy

• Selecting the shadow cell associated with the access involving the least number of bytes

• Reduces the risk of overlapping with subsequent accesses
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Latest 
Results
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Benchmark #Threads
#Input 

Values

Execution Time (sec)
Memory

Overhead

Post-mortem 

Overhead

Native TMon* TSan TMon** TSan TMon***

Fourier 

Transform

5
215 8.0 9.1 38.1 0% 4.7× 52%

216 31.9 36.3 152.0 0% 4.8× 65%

10
215 5.4 6.3 67.1 0% 5.1× 53%

216 21.5 23.3 281.4 0% 5.5× 68%

15
215 3.8 4.3 63.7 0% 6.0× 60%

216 15.2 18.4 263.5 0% 6.2× 72%

Avr. Overhead 1.15× 11.4× - 5.4×

Latest Results

Fourier Transform [1]

• Different number of threads, different number of input values

[1] https://github.com/EstellaPaula/FFT-parallelized-with-PThread-API

* Includes the overhead of collecting traces using perf

** No direct impact on the application, but there are Intel PT buffers for collecting the trace

*** In comparison to the native execution time
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Conclusion &

Future Work
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Conclusion

• TMon: A low-overhead postmortem data race detector for C/C++ programs

• Based on low-overhead ptwrite instrumentation

• Encoding the required runtime information for data race detection as ptwrite payloads

• Much less runtime and memory overhead compared to TSan

Future Work

• A similar approach may be adapted to design post-mortem tools that emulate other runtime 

verification tools, such as AddressSanitizer (ASan)

Conclusion & Future Work
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Thanks!
Questions? Comments?

farzam.dorostkar@polymtl.ca
https://github.com/FarzamDorostkar

33/33
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