
Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Tracing Heterogeneous Programming Models with LTTng and
Babeltrace

Aurelio A. Vivas Meza Solomon Bekele Thomas Applencourt Brice Videau

Argonne National Laboratory

17th Sept 2023

1 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Section 1

Context

2 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Intro
We work with HPC applications that are highly parallel, distributed,
but that also leverage accelerators such as GPUs. Programming
languages and models to implement these HPC applications have
never been more diverse:

Languages
FORTRAN
C
C++
Python

Prospective
languages

Julia
Lua
PGAS approaches

Programming models
MPI
OpenMP
CUDA, L0, ROCm, HIP, OpenCL
SYCL, Kokkos, Raja

Domain Based Programming Models
Linear algebra: BLAS/LAPACK
FFTs: cuFFT, FFTWx, mkl FFT
Low level AI: cuDNN, clDNN, Intel DNNL
AI/ML: TensorFlow/Caffe/PyTorch

3 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Problematic

This plethora of alternatives are entwined, especially since
heterogeneous computing is the norm.

Possible Dependencies
SYCL:

HIP
OpenCL
L0

OpenMP:
OpenCL
CUDA
L0

OpenCL:
L0
CUDA

HIP:
CUDA
OpenCL
ROCm
L0

Kokkos
OpenMP
CUDA
SYCL

. . .

4 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Objectives
Introspect Applications and programming models

Analyze applications based on those models;
Understand application performances;
Understand interactions between applications / compilers / run-times
/ system / hardware;
Influence/optimize application at any point:

writing,
optimization,
execution.

Examples
How programming models are implemented on top of each other?

How OpenMP nowait are implemented in LLVM?
How applications are using programming models?

What is the maximum memory allocated by my program on the
GPU?

5 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Solution: Tracing

Trace as many programming models as possible
Trace should capture as much context as possible, and be lightweight
as possible

Develop tools to analyze traces
Summary, timeline, etc. . .

Modular code architecture
Ease the implementation of new “front-end”

Solution needs to be efficient, robust, and scalable, but maybe not all
at the same time :)

Capture millions of events per second per node;
Run for hours;
Up to 10,624 nodes.

6 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Section 2

THAPI: Tracing Heterogeneous APIs

7 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Programming-Model Centric Debugging /
Tracing

Traces should contain enough information to reconstruct the
programming model state.

Traces can be:

Tallied to give high-level summary
Used to generate flame-graphs
Used to check valid usage of programming model

Check for error code
Correct synchronization
API semantics

Analyzed using dedicated tools
Input for simulation frameworks

8 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

THAPI Principles

Programming-Model centric tracing
Save arguments and results of each runtime entry points

18:56:59.677295870 - arc03 - vpid: 37040, vtid: 37040
- lttng_ust_ze:zeKernelSetIndirectAccess_entry:

{ hKernel: 0x0000000002cd2b20, flags: [ZE_KERNEL_INDIRECT_ACCESS_FLAG_DEVICE] }
18:56:59.677296042 - arc03 - vpid: 37040, vtid: 37040

- lttng_ust_ze:zeKernelSetIndirectAccess_exit:
{ zeResult: ZE_RESULT_SUCCESS }

Flexible
Fine granularity, you can enable/disable individual events tracing,
Trace can be read programmatically (C, Python, Ruby),
We provide tools calibrated to our needs as starting-blocks.

Low/Reasonable overhead

9 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

THAPI Consist in 2 bigs components

Open source at: https://github.com/argonne-lcf/THAPI

The tracing of events
Use low level tracing: Linux Tracing Toolkit Next Generation
(LTTng):
Tracepoints are generated from APIs’ headers

The parsing of the trace
Use Babeltrace2 library and tools
Pretty Printer, Tally, Timeline/Flamegraph, . . .

Supported APIs
OpenCL, Level Zero, Cuda Runtime/Driver, HIP
OMPT

10 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

LTTng

State of the art tracing infrastructure for kernel and user-space.

Well maintained and established (used in industry leading
data-centers)
Binary format (CTF: Common Trace Format) open standard
About 0.2us overhead per tracepoint (in our case: blocking mode)

can be relaxed if use case tolerate event losses
LTTng relay daemons can be setup to stream over the network in
complex topologies

ideal to deploy at scale

11 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Automatic LTTng Tracepoint Generation

We trace all APIs entry points (OpenCL, CUDA, Level Zero, HIP) or
tracing callbacks (OMPT)

Tracing using interception library
We also support sampling of user-events

Tedious, error prone, and hard to maintain by hand
Automatic generation from headers or API description (OpenCL)

C99 parser => YAML intermediary representation
YAML + user provided meta information + user provided tracepoints
=> wrapper functions + Trace Model
Trace Model => tracepoints

12 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Example: cuDeviceGetCount
API model
- name: cuDeviceGetCount

type:
kind: custom_type
name: CUresult

params:
- name: count

type:
kind: pointer
type:

kind: int
name: int

User provided meta-information

cuDeviceGetCount:
- [OutScalar, count]

Interception
CUresult cuDeviceGetCount(int *count) {

tracepoint(lttng_ust_cuda, cuDeviceGetCount_entry, count);
CUresult _retval;
_retval = CU_DEVICE_GET_COUNT_PTR(count);
tracepoint(lttng_ust_cuda, cuDeviceGetCount_exit, count, _retval);
return _retval;

}

Trace output (pretty):
21:03:53.070592532 - x3006c0s25b0n0 - vpid: 36056, vtid: 36056

- lttng_ust_cuda:cuDeviceGetCount_entry: { count: 0x00007ffe93bec390 }
21:03:53.070593929 - x3006c0s25b0n0 - vpid: 36056, vtid: 36056

- lttng_ust_cuda:cuDeviceGetCount_exit: { cuResult: CUDA_SUCCESS, count_val: 6 }

13 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Example: cuDeviceGetCount (Continued)
Trace Model:

- :name: lttng_ust_cuda:cuDeviceGetCount_entry
:payload:
- :name: count

:cast_type: int *
:class: unsigned
:class_properties:

:field_value_range: 64
:preferred_display_base: 16

- :name: lttng_ust_cuda:cuDeviceGetCount_exit
:payload:
- :name: cuResult

:cast_type: CUresult
:class: signed
:class_properties:

:field_value_range: 32
:be_class: CUDA::CUResult

- :name: count_val
:cast_type: int
:class: signed
:class_properties:

:field_value_range: 32

Tracepoints:
TRACEPOINT_EVENT(

lttng_ust_cuda,
cuDeviceGetCount_entry,
TP_ARGS(

int *, count
),
TP_FIELDS(

ctf_integer_hex(uintptr_t, count,
(uintptr_t)(count))

)
)

TRACEPOINT_EVENT(
lttng_ust_cuda,
cuDeviceGetCount_exit,
TP_ARGS(

int *, count,
CUresult, cuResult

),
TP_FIELDS(

ctf_integer(int32_t, cuResult, cuResult)
ctf_integer(int, count_val, (count ? *count : 0))

)
)

14 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Babeltrace 2

Reference parser implementation of Common Trace Format
Modular plugin infrastructure
Compose Babeltrace 2 components into trace processing graphs:

Sources
Filters
Sinks

babeltrace2 --plugin-path=$libdir \
--component=filter.zeinterval.interval \
--component=filter.ompinterval.interval \
--component=sink.xprof.tally

THAPI Pipeline of plugins
Filters which aggregate messages
Sinks which create outputs:

Tally
Pretty Print
Timeline + Power monitoring

Automatic Plugins generation for Babeltrace 2 from the Trace Model

15 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Metababel

Problem: Writing Babeltrace 2 plugin by hand is tedious, error prone
and hard to maintain.

Using Python bindings is too slow -> Use C or C++
Main Idea: Attaching User-Callbacks to Trace Events
Metababel generates Babeltrace 2 calls to read, write and dispatch
events to User-Callbacks

Generate State Machine to handle Babeltrace 2 messages queues
Open Source: https://github.com/TApplencourt/metababel

16 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Metababel Example
Signature of callbacks for cuDeviceGetCount_exit:
typedef void cuDeviceGetCount_exit_callback_t(void *btx_handle, CUresult cuResult, int count_val);

Babeltrace 2 Code Generated (extract):
CUresult cuResult;
int count_val;
const bt_field *payload_field = bt_event_borrow_payload_field_const(bt_evt);
{

const bt_field *_field = NULL;
_field = bt_field_structure_borrow_member_field_by_index_const(payload_field, 0);
cuResult = (CUresult)bt_field_integer_signed_get_value(_field);

}
{

const bt_field *_field = NULL;
_field = bt_field_structure_borrow_member_field_by_index_const(payload_field, 1);
count_val = (int)bt_field_integer_signed_get_value(_field);

}
[...]

Example of user code:
#include <metababel/metababel.h>
void cuDeviceGetCount_exit_callback(void *btx_handle, CUresult cuResult, int count_val) {

std::cout << "cuResult: " << cuResult << ", count_val: " << count_val << std::endl;
}
void btx_register_usr_callbacks(void *btx_handle) {

btx_register_cuDeviceGetCount_exit(btx_handle, &cuDeviceGetCount_exit_callback);
}

17 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Babeltrace 2 Ruby Binding

Plugins need to be fasts
But Bindings for fast prototyping or handling of Babeltrace 2
components graph is useful
Python is quite painful to package on HPC system
Developed Ruby Bindings
(https://github.com/argonne-lcf/babeltrace2-ruby)

18 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Section 3

THAPI Showcase

19 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

THAPI Examples: iprof -t ./a.out

Wrapping the API entry points to be able to reconstruct the context.
> ./iprof -t ./a.out

{ thread_type: ompt_thread_initial, thread_data: 0x00007f5b0cf0ac48 }
ompt_callback_target:

{ kind: ompt_target, endpoint: ompt_scope_end, device_num: 0, task_data: 0x0000000000000000,
target_id: 1, codeptr_ra: 0x00007f5b26fa47e0 }

[...]
ompt_callback_target_data_op_intel:

{ endpoint: ompt_scope_begin, target_id: 1, host_op_id: 7, optype: ompt_target_data_transfer_to_device,
src_addr: 0x00007f5b20088280, src_device_num: -10, dest_addr: 0xffffc001ffd80000,
dest_device_num: 0, bytes: 131072, codeptr_ra: 0x00007f5b26fa47e0 }

clEnqueueMemcpyINTEL_entry:
{ command_queue: 0x181a540, blocking: CL_FALSE,

dst_ptr: 0xffffc001ffd80000, src_ptr: 0x00007f5b20088280, size: 64, num_events_in_wait_list: 0,
event_wait_list: 0x0, event: 0x7ffc4ac01378, event_wait_list_vals: [] }

clEnqueueMemcpyINTEL_exit:
{ errcode_ret_val: CL_SUCCESS, event_val: 0x1dffb30 }

ompt_callback_target_data_op_intel:
{ endpoint: ompt_scope_end, target_id: 1, host_op_id: 7, optype: ompt_target_data_transfer_to_device,

src_addr: 0x00007f5b20088280, src_device_num: -10, dest_addr: 0xffffc001ffd80000,
dest_device_num: 0, bytes: 131072, codeptr_ra: 0x00007f5b26fa47e0 }

20 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

THAPI Examples: iprof
$iprof ./target_teams_distribute_parallel_do.out # Using Level0 backend
Trace location: /home/tapplencourt/lttng-traces/iprof-20210408-204629
BACKEND_OMP | 1 Hostnames | 1 Processes | 1 Threads |

Name | Time | Time(%) | Calls | Average | Min | Max |
ompt_target | 3.65ms | 100.00% | 1 | 3.65ms | 3.65ms | 3.65ms |

Total | 3.65ms | 100.00% | 1 |

BACKEND_OMP_TARGET_OPERATIONS | 1 Hostnames | 1 Processes | 1 Threads |
Name | Time | Time(%) | Calls | Average | Min | Max |

ompt_target_data_alloc | 1.97ms | 54.19% | 4 | 491.63us | 847ns | 1.12ms |
ompt_target_data_transfer_to_device | 1.26ms | 34.63% | 5 | 251.37us | 112.60us | 460.90us |

ompt_target_data_transfer_from_device | 250.76us | 6.91% | 1 | 250.76us | 250.76us | 250.76us |
ompt_target_submit_intel | 155.04us | 4.27% | 1 | 155.04us | 155.04us | 155.04us |

[...]
Total | 3.63ms | 100.00% | 11 |

BACKEND_ZE | 1 Hostnames | 1 Processes | 1 Threads |
Name | Time | Time(%) | Calls | Average | Min | Max |

zeModuleCreate | 846.26ms | 96.89% | 1 | 846.26ms | 846.26ms | 846.26ms |
zeCommandListAppendMemoryCopy | 10.73ms | 1.23% | 12 | 893.82us | 12.96us | 5.33ms |

[...]
Total | 873.46ms | 100.00% | 117 |

Device profiling | 1 Hostnames | 1 Processes | 1 Threads | 1 Devices |
Name | Time | Time(%) | Calls | Average | Min | Max |

zeMemoryCopy(DM) | 64.48us | 7.14% | 1 | 64.48us | 64.48us | 64.48us |
__omp_offloading_33_7d35e996_MAIN___l9 | 27.84us | 3.08% | 1 | 27.84us | 27.84us | 27.84us |
[...]

Total | 902.72us | 100.00% | 13 |

21 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Timeline visualization

Use perfetto/chrome protobuf trace format

Figure 1: timeline

22 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Section 4

Perspectives

23 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Conclusion / Future Work

Trace all the runtime stack!
In the process of the v1.0 release (big refactoring of the internal)
MPI api / HSA support

24 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Scaling on Exascale System (Aurora)

Platform wide monitoring
Granularity? Kernel launches? Kernel times? Sampling?

Aggregation/reduction trees
Leveraging LTTng and Babeltrace2 streaming capabilities

New Babeltrace2 plugins (network filter?)
Trace processing time?

Session Rotation
Non blocking

25 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Open to Collaborations

Currently collaborating with EfficiOS to improve performance of
LTTng / Babeltrace for our use case.
Visualization of trace

Multiple tools reimplements the same logic (perfetto, TraceCompass,
HPC Toolkit for example)
Should we agree on a intermediate CTF format so we can share
implementation?

Interval: name, type, origin, start time, duration
This can help grow the ecosystem

Expend Metababel for more use-case

26 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

Context THAPI: Tracing Heterogeneous APIs THAPI Showcase Perspectives

Acknowledgement

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of
Energy (DOE) Office of Science and the National Nuclear Security
Administration.

This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

27 / 27Tracing Heterogeneous Programming Models with LTTng and Babeltrace

	Context
	THAPI: Tracing Heterogeneous APIs
	THAPI Showcase
	Perspectives

