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Agenda

● Brief History of SFrame
● Motivation behind SFrame

– Fast, low-overhead stack tracing

● Introduction to the SFrame format
● New developments since SFrame V1
● Ongoing and future work
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Brief History of SFrame

● The Simple Frame stack trace format
● [January’23] SFrame V1 released with GNU 

binutils 2.40
● [May’23] POC of SFrame-based user space 

stack unwinder in the Linux kernel
● [July’23] SFrame V2 released with GNU 

binutils 2.41
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Stack traces
● Stack traces are needed for all profiling, 

tracing and debugging tools, and more
● What methods are used to generate stack 

traces?
– [Heuristics] Decode and Infer stack ops

– [Dedicated Reg / HW] Frame pointer method, 
LBR

– [Debug Format] EH Frame, Application-specific 
formats (ORC etc.)
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Stack traces – Current methods

Method Pros Cons

Frame pointer Simple, fast Performance impact; 
Applications may not have 
preserved frame pointer

EH Frame Versatile Complex unwinder with high 
resource requirements

ORC, and other 
application-
specific formats

Fast, “off-
band”

Not supported in toolchain. 
Need reverse engineering of 
binaries
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Key requirements of an effective stack trace format

● Requirements for fast, low-overhead stack 
tracing:
– Support for asynchronous stack tracing
– Low overhead stack tracing
– Low complexity stack tracer
– Generated by the Toolchain

● SFrame format has been designed to fulfill 
these requirements
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SFrame – Simple Frame stack trace format

● First defined and implemented in Binutils 2.40
– [Spec] https://sourceware.org/binutils/docs/

● Encodes the minimal necessary information 
required to stack trace, per PC:
– Canonical Frame Address (CFA)
– Frame Pointer (FP)
– Return Address (RA)



 8

SFrame – overview

● Current version: SFRAME_VERSION_2
● New ELF section named ‘.sframe’ in a segment of its own, 

PT_GNU_SFRAME
– Use --gsframe to GNU assembler (as)

● Defined for x86_64 (AMD64) and aarch64 (AAPCS64) 
ABIs
– Adding more ABIs will need format revision

● Has support for pltN entries, PAC-related RA signing 
constructs
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SFrame – Stack trace info per function
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SFrame – overall data layout
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SFrame – FDE representation

● SFrame Function Descriptor Entry (FDE)
– Function start PC
– Function size in bytes
– Type of code block (regular or pltN)
– Offset to the SFrame FREs
– Number and Type of FREs (a.k.a. FRE 

encoding)
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SFrame – FRE representation

● SFrame Frame Row Entry (FRE)
– Backbone of SFrame stack trace information

– “Given a PC, what are the stack offsets to recover the 
CFA, FP and RA"

● FRE contains
– Start IP offset (a.k.a, offset from the start PC of function) 

encoded in  1 / 2 / 4 bytes

– Variable number of stack offsets

– Size of stack offsets is tunable
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SFrame – What makes it effective

● Generated by the Toolchain
● Simple format designed with fast, low-

overhead stack tracing in mind
– Let’s talk about its three key features...
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SFrame – Three key features - (1/3)

● FDEs are sorted on start PCs of functions
– Quickly find the stack trace data for the 

PC
– Stack tracers can use binary search to 

find the FDE
– FDE holds the offset to where the 

corresponding SFrame FREs
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SFrame – Three key features - (2/3)

● Stack offsets to recover CFA, RA, FP are 
encoded directly in the FRE
– No complex expressions, no stack 

machine needed to generate stack 
offsets
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SFrame – Three key features - (3/3)

● On-disk FRE representation has some space-
saving strategies
– Compactness is important

● Space-efficient on-disk encoding is necessary
– Functions are of varied sizes
– Each function uses stack differently
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SFrame stack trace generation is easy
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SFrame format – What’s next?

● [GNU as] Directive .cfi_escape are not handled
– Not fully asynchronous,

but close
● [Not supported] Using DRAP

to realign stack
● Support use-cases of  the SFrame format

– Linux kernel, User space applications, ...
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Changes in V2

● Enhancement: Size of pltN Entry is 
encoded explicitly

● Bugfix: SFrame FDE being 17 bytes, 
caused misaligned accesses in libsframe
– SFrame FDE size is now 20 bytes; including 

2 trailing empty bytes

● Other toolchains should ideally prefer V2
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User space stack tracing in Linux kernel

● Relieve user space applications from the 
need to be built with frame-pointer 
preserved

● Fast, low-overhead stack tracing
– Simple unwinder
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User space stack tracing in Linux kernel

● [POC] SFrame based stack tracer for user space on 
linux-toolchains@vger.kernel.org
– New Kconfig option USER_UNWINDER_SFRAME
– Add to task_struct: struct sframe_state *sframe_state;

● sframe_state_setup () in load_elf_binary ()
– small library of SFrame decode and access APIs, stack tracer

● Other helper routines like iterate_phdr ()
– Changes made directly in perf_callchain_user()

● perf, bpf_get_stack (), DTrace

https://lore.kernel.org/linux-toolchains/20230501181515.098acdce@gandalf.local.home/T/#mbc6cf11623f63aaaf41f51943260bd6b190c2623
mailto:linux-toolchains@vger.kernel.org
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Issues with the POC

● Accessed SFrame data in NMI context
● sframe_callchain_user() hooked into 

perf_callchain_user()
● Discussed next steps at LSF/MM/BPF 

Summit (May 2023)
– SFrame, Steve Rostedt, Indu Bhagat
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Brief discussion notes - I

● Changes in perf
– “Work to do before return-to-user”: Get the stack 

trace on the return-to-user path (ptrace () path) in 
Kernel context

– Set state to indicate that “user space stack trace will 
be added later”

● User space unwinder
– Rework the interfaces
– “Something that perf calls into, not hooked into perf”
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Brief discussion notes - II

● We need to be able to track 
dlopen/dlclose, or additional shared 
libraries loaded via the dynamic linker at 
the task execution time.

● Notes https://lwn.net/Articles/932209/

https://lwn.net/Articles/932209/
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Summary

● The impact of SFrame format
● Recent new developments

– SFrame V2
– User space stack tracing in Linux kernel

● Get in touch
– linux-toolchains@vger.kernel.org
– binutils@sourceware.org



New developments in the 
SFrame stack trace format

~ Q & A ~
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