
New developments in the
SFrame stack trace format

Indu Bhagat (Oracle)
Jose E. Marchesi (Oracle)

Tracing Summit 2023

 2

Agenda

● Brief History of SFrame
● Motivation behind SFrame

– Fast, low-overhead stack tracing

● Introduction to the SFrame format
● New developments since SFrame V1
● Ongoing and future work

 3

Brief History of SFrame

● The Simple Frame stack trace format
● [January’23] SFrame V1 released with GNU

binutils 2.40
● [May’23] POC of SFrame-based user space

stack unwinder in the Linux kernel
● [July’23] SFrame V2 released with GNU

binutils 2.41

 4

Stack traces
● Stack traces are needed for all profiling,

tracing and debugging tools, and more
● What methods are used to generate stack

traces?
– [Heuristics] Decode and Infer stack ops

– [Dedicated Reg / HW] Frame pointer method,
LBR

– [Debug Format] EH Frame, Application-specific
formats (ORC etc.)

 5

Stack traces – Current methods

Method Pros Cons

Frame pointer Simple, fast Performance impact;
Applications may not have
preserved frame pointer

EH Frame Versatile Complex unwinder with high
resource requirements

ORC, and other
application-
specific formats

Fast, “off-
band”

Not supported in toolchain.
Need reverse engineering of
binaries

 6

Key requirements of an effective stack trace format

● Requirements for fast, low-overhead stack
tracing:
– Support for asynchronous stack tracing
– Low overhead stack tracing
– Low complexity stack tracer
– Generated by the Toolchain

● SFrame format has been designed to fulfill
these requirements

 7

SFrame – Simple Frame stack trace format

● First defined and implemented in Binutils 2.40
– [Spec] https://sourceware.org/binutils/docs/

● Encodes the minimal necessary information
required to stack trace, per PC:
– Canonical Frame Address (CFA)
– Frame Pointer (FP)
– Return Address (RA)

 8

SFrame – overview

● Current version: SFRAME_VERSION_2
● New ELF section named ‘.sframe’ in a segment of its own,

PT_GNU_SFRAME
– Use --gsframe to GNU assembler (as)

● Defined for x86_64 (AMD64) and aarch64 (AAPCS64)
ABIs
– Adding more ABIs will need format revision

● Has support for pltN entries, PAC-related RA signing
constructs

 9

SFrame – Stack trace info per function

 10

SFrame – overall data layout

 11

SFrame – FDE representation

● SFrame Function Descriptor Entry (FDE)
– Function start PC
– Function size in bytes
– Type of code block (regular or pltN)
– Offset to the SFrame FREs
– Number and Type of FREs (a.k.a. FRE

encoding)

 12

SFrame – FRE representation

● SFrame Frame Row Entry (FRE)
– Backbone of SFrame stack trace information

– “Given a PC, what are the stack offsets to recover the
CFA, FP and RA"

● FRE contains
– Start IP offset (a.k.a, offset from the start PC of function)

encoded in 1 / 2 / 4 bytes

– Variable number of stack offsets

– Size of stack offsets is tunable

 13

SFrame – What makes it effective

● Generated by the Toolchain
● Simple format designed with fast, low-

overhead stack tracing in mind
– Let’s talk about its three key features...

 14

SFrame – Three key features - (1/3)

● FDEs are sorted on start PCs of functions
– Quickly find the stack trace data for the

PC
– Stack tracers can use binary search to

find the FDE
– FDE holds the offset to where the

corresponding SFrame FREs

 15

SFrame – Three key features - (2/3)

● Stack offsets to recover CFA, RA, FP are
encoded directly in the FRE
– No complex expressions, no stack

machine needed to generate stack
offsets

 16

SFrame – Three key features - (3/3)

● On-disk FRE representation has some space-
saving strategies
– Compactness is important

● Space-efficient on-disk encoding is necessary
– Functions are of varied sizes
– Each function uses stack differently

 17

SFrame stack trace generation is easy

 18

SFrame format – What’s next?

● [GNU as] Directive .cfi_escape are not handled
– Not fully asynchronous,

but close
● [Not supported] Using DRAP

to realign stack
● Support use-cases of the SFrame format

– Linux kernel, User space applications, ...

 19

Changes in V2

● Enhancement: Size of pltN Entry is
encoded explicitly

● Bugfix: SFrame FDE being 17 bytes,
caused misaligned accesses in libsframe
– SFrame FDE size is now 20 bytes; including

2 trailing empty bytes

● Other toolchains should ideally prefer V2

 20

User space stack tracing in Linux kernel

● Relieve user space applications from the
need to be built with frame-pointer
preserved

● Fast, low-overhead stack tracing
– Simple unwinder

 21

User space stack tracing in Linux kernel

● [POC] SFrame based stack tracer for user space on
linux-toolchains@vger.kernel.org
– New Kconfig option USER_UNWINDER_SFRAME
– Add to task_struct: struct sframe_state *sframe_state;

● sframe_state_setup () in load_elf_binary ()
– small library of SFrame decode and access APIs, stack tracer

● Other helper routines like iterate_phdr ()
– Changes made directly in perf_callchain_user()

● perf, bpf_get_stack (), DTrace

https://lore.kernel.org/linux-toolchains/20230501181515.098acdce@gandalf.local.home/T/#mbc6cf11623f63aaaf41f51943260bd6b190c2623
mailto:linux-toolchains@vger.kernel.org

 22

Issues with the POC

● Accessed SFrame data in NMI context
● sframe_callchain_user() hooked into

perf_callchain_user()
● Discussed next steps at LSF/MM/BPF

Summit (May 2023)
– SFrame, Steve Rostedt, Indu Bhagat

 23

Brief discussion notes - I

● Changes in perf
– “Work to do before return-to-user”: Get the stack

trace on the return-to-user path (ptrace () path) in
Kernel context

– Set state to indicate that “user space stack trace will
be added later”

● User space unwinder
– Rework the interfaces
– “Something that perf calls into, not hooked into perf”

 24

Brief discussion notes - II

● We need to be able to track
dlopen/dlclose, or additional shared
libraries loaded via the dynamic linker at
the task execution time.

● Notes https://lwn.net/Articles/932209/

https://lwn.net/Articles/932209/

 25

Summary

● The impact of SFrame format
● Recent new developments

– SFrame V2
– User space stack tracing in Linux kernel

● Get in touch
– linux-toolchains@vger.kernel.org
– binutils@sourceware.org

New developments in the
SFrame stack trace format

~ Q & A ~

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

