
Programmable dynamic tracing on Linux 
with DTrace using BPF

dr. Kris Van Hees
Consulting Engineer, Languages and Tools

Linux Engineering

September 18, 2023



09/14/2023Copyright © 2023, Oracle and/or its affiliates2

1. Short overview of DTrace on Linux

2. Programmable dynamic tracing:

– D scripts compiled into BPF programs

3. The ‘joy’ of product status…

4. .. and other challenges

5. Features we need but do not have in upstream kernels (yet)

6. More information…  Get involved...

Overview



09/14/2023Copyright © 2023, Oracle and/or its affiliates3

● DTrace for Linux started in 2010
● Between 2018 and 2020, DTrace transitioned from an invasive kernel/userspace implementation to a 

pure userspace implementation (based on kernel tracing features incl. eBPF).

● DTrace provides:

● Combined kernel space and userspace tracing

● C-style scripting language

● Higher level data structures (strings, arrays, associative arrays, aggregations)

● Scripted actions associated with probes

● Speculative tracing

● ...

Short overview of DTrace on Linux



09/14/2023Copyright © 2023, Oracle and/or its affiliates4

● DTrace provides programmable tracing:

● Code is written in clauses

● Clauses are associated with probes and act like functions, executed when the probe fires

● Predicates provide conditional clauses

● Any number of clauses can be associated with a probe

● Any number of probes can be associated with a clause

● DTrace provides dynamic tracing:

● Scripts written in D

● Can adapt to trace data

Programmable dynamic tracing



09/14/2023Copyright © 2023, Oracle and/or its affiliates5

fbt::wake_up_new_task:entry
{
    self→p = (struct task_struct *)arg0;
    euids[self→p→tgid] = self→p→cred→euid.val;
    comms[self→→tgid] = (string)self→p→name;
}

sched_process_exit
{ euids[pid] = 0; }

proc:::exit
{ comms[pid] = 0; }

execve:entry
{
    this→in_execve = 1;
    this→uid = 0;
}

D scripts are compiled into BPF programs

execve:return
{
    this→in_execve = 0;
}

path_openat:return
/this→in_execve && arg1 > 0 && arg1 < 4096/
{
    this→uid = ((struct file 
*)arg1)→f_inode→i_uid.val;
}

path_openat:return
/this→execve && arg1 && comms[ppid] != 0 &&
 this→uid != 0 && this→uid != euids[ppid]/
{
    printf(“…”);

}



09/14/2023Copyright © 2023, Oracle and/or its affiliates6

fbt::wake_up_new_task:entry
{
    self→p = (struct task_struct *)arg0;
    euids[self→p→tgid] = self→p→cred→euid.val;
    comms[self→→tgid] = (string)self→p→name;
}

sched_process_exit
{ euids[pid] = 0; }

proc:::exit
{ comms[pid] = 0; }

execve:entry
{
    this→in_execve = 1;
    this→uid = 0;
}

D scripts are compiled into BPF programs

execve:return
{
    this→in_execve = 0;
}

path_openat:return
/this→in_execve && arg1 > 0 && arg1 < 4096/
{
    this→uid = ((struct file 
*)arg1)→f_inode→i_uid.val;
}

path_openat:return
/this→execve && arg1 && comms[ppid] != 0 &&
 this→uid != 0 && this→uid != euids[ppid]/
{
    printf(“…”);

}

FBT providet

FBT providet

FBT providet



09/14/2023Copyright © 2023, Oracle and/or its affiliates7

fbt::wake_up_new_task:entry
{
    self→p = (struct task_struct *)arg0;
    euids[self→p→tgid] = self→p→cred→euid.val;
    comms[self→→tgid] = (string)self→p→name;
}

sched_process_exit
{ euids[pid] = 0; }

proc:::exit
{ comms[pid] = 0; }

execve:entry
{
    this→in_execve = 1;
    this→uid = 0;
}

D scripts are compiled into BPF programs

execve:return
{
    this→in_execve = 0;
}

path_openat:return
/this→in_execve && arg1 > 0 && arg1 < 4096/
{
    this→uid = ((struct file 
*)arg1)→f_inode→i_uid.val;
}

path_openat:return
/this→execve && arg1 && comms[ppid] != 0 &&
 this→uid != 0 && this→uid != euids[ppid]/
{
    printf(“…”);

}

FBT providet

FBT providet

FBT providet

tracepoint



09/14/2023Copyright © 2023, Oracle and/or its affiliates8

fbt::wake_up_new_task:entry
{
    self→p = (struct task_struct *)arg0;
    euids[self→p→tgid] = self→p→cred→euid.val;
    comms[self→→tgid] = (string)self→p→name;
}

sched_process_exit
{ euids[pid] = 0; }

proc:::exit
{ comms[pid] = 0; }

execve:entry
{
    this→in_execve = 1;
    this→uid = 0;
}

D scripts are compiled into BPF programs

execve:return
{
    this→in_execve = 0;
}

path_openat:return
/this→in_execve && arg1 > 0 && arg1 < 4096/
{
    this→uid = ((struct file 
*)arg1)→f_inode→i_uid.val;
}

path_openat:return
/this→execve && arg1 && comms[ppid] != 0 &&
 this→uid != 0 && this→uid != euids[ppid]/
{
    printf(“…”);

}

FBT providet

FBT providet

FBT providet

tracepoint

Syscall provider

Syscall provider



09/14/2023Copyright © 2023, Oracle and/or its affiliates9

fbt::wake_up_new_task:entry
{
    self→p = (struct task_struct *)arg0;
    euids[self→p→tgid] = self→p→cred→euid.val;
    comms[self→→tgid] = (string)self→p→name;
}

sched_process_exit
{ euids[pid] = 0; }

proc:::exit
{ comms[pid] = 0; }

execve:entry
{
    this→in_execve = 1;
    this→uid = 0;
}

D scripts are compiled into BPF programs

execve:return
{
    this→in_execve = 0;
}

path_openat:return
/this→in_execve && arg1 > 0 && arg1 < 4096/
{
    this→uid = ((struct file 
*)arg1)→f_inode→i_uid.val;
}

path_openat:return
/this→execve && arg1 && comms[ppid] != 0 &&
 this→uid != 0 && this→uid != euids[ppid]/
{
    printf(“…”);

}

proc-provider

FBT providet

FBT providet

FBT providet

tracepoint

Syscall provider

Syscall provider



09/14/2023Copyright © 2023, Oracle and/or its affiliates10

● Each clause is compiled into a BPF function
● DTrace probes are mapped to kernel-level probes:

– FBT probes are mapped to kprobes

– Syscall probes are mapped to syscall entry and return tracepoints

– Profile probes are mapped to perf timer events

– USDT and pid probes are mapped to uprobes

– SDT probes (proc, sched, lockstat, …) are mapped to any other probe
● Sometimes a single probe, sometimes multiple probes
● Sometimes multiple probes working together (e.g. one does setup, the other reports the firing)

● Common subroutines are implemented using pre-compiled BPF code

– Leveraging BPF support in GCC and binutils

D scripts are compiled into BPF programs (cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates11

● A BPF program is generated for each kernel-level probe:

– BPF program types vary across different kernel-level probes
● BPF programs are specific to a certain program type

– DTrace considers all probes to be essentially the same
● Differences are reflected in naming (irrelevant) and probe arguments

– A single clause associated with two probes of different BPF program type requires 
two BPF programs.

– DTrace probes implemented on top of other DTrace probes need to appear to the consumer as 
distinct probes.

D scripts are compiled into BPF programs (cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates12

● The BPF program for a specific BPF probe is generated as a trampoline:

– Exit immediately if the consumer has not started yet                                 (global on/off switch)
– Create a DTrace context:

● Populate probe arguments based on the BPF context (program type specific)
● Set up the DTrace context based on the DTrace probe information
● Set up the output buffer and other internal pointers and data structures

– Generate calls to all clause BPF functions for this kernel-level probe, checking before each call 
whether tracing is still active                                                                      (global on/off switch)

– For each (if any) (dependent) DTrace probe implemented based on this (underlying) probe:
● Save the probe arguments
● Morph the DTrace context into the dependent DTrace probe and call its clauses
● Restore the probe arguments

D scripts are compiled into BPF programs (cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates13

● The final (loadable) BPF program is then constructed using a custom linker:

– Recursively resolve all function call references by appending the generated code for the function 
(clause BPF function or pre-compiled BPF function) to the program and patching the call target 
offset

– Resolve all symbolic references to constants that are compilation-specific

D scripts are compiled into BPF programs (cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates14

It all sounds so easy…

D scripts are compiled into BPF programs (cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates15

It all sounds so easy…

too easy...

D scripts are compiled into BPF programs (cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates16

● Since 2020, DTrace based on BPF is supported as a product on various kernel releases:

● 5.4.x-based kernels

● 5.15.x-based kernels

● Most development is done on newer kernels:

● 6.1.x

● 6.5.x

● bpf-next

… and that has consequences!

The ‘joy’ of product status...



09/14/2023Copyright © 2023, Oracle and/or its affiliates17

● Kernel helpers differ between kernel versions (usually more, never less)
● BPF verifier behaviour differs between kernel helpers
● Kernel implementation of target areas for tracing change (less common)

● And there is an expectation of retaining documented behaviour

The joy of ‘product’ status… (cont.)  … and other challenges



09/14/2023Copyright © 2023, Oracle and/or its affiliates18

● bpf_probe_read() and bpf_probe_read_str() can be used for kernel and userspace addresses on most 
architectures (but not all)

● bpf_probe_read_kernel(), bpf_probe_read_user(), bpf_probe_read_kernel_str(), 
bpf_probe_read_user_str() were introduced later to resolve this

● Some kernels versions had a confusing mix of what worked and what didn’t

● bpf_get_current_task_btf() and bpf_task_pt_regs() were introduced in later kernels

● But we still need to get to task CPU registers on older kernels also

● We wrote some (semi-convoluted) BPF code to mimic the kernel code to determine the location of 
the saved userspace registers for the current task, using bpf_probe_kernel_read()s to chase pointer 
chains to get to our target.

Some BPF helpers are only available in newer kernels



09/14/2023Copyright © 2023, Oracle and/or its affiliates19

● BPF verifier is meant to guarantee safety of BPF programs being loaded into the kernel
● BPF verifier allows programs to pass that it deems safe

● But it may reject programs that are actually perfectly safe

● It is impossible to get it right all the time

● Compiler-generated code may be safe because of how the code is generated, but the BPF verifier may 
not be able to ascertain that

● DTrace provides programmable dynamic tracing, so it needs to be able to generate programs

● We strike a balance between generating efficient code and code that is constructed to ensure it can 
pass the BPF verifier.

Creative programming to work around BPF verifier limitations



09/14/2023Copyright © 2023, Oracle and/or its affiliates20

● Remember: BPF verifier implementations differ between kernel versions
● We need to be able to pass the BPF verifier on all supported kernel versions

● Sadly, this is often a process of trial and error:
● Analyze a rejection
● Find a solution
● Ensure the solution is valid on all supported kernel versions

Creative programming to work around BPF verifier limitations 
(cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates21

● The BPF verifier uses static evaluation of instruction sequences to ‘prove’ safety
● There is a limit on how many instructions the BPF verifier will evaluate: 1 million

● That is a pretty low limit, because...

Creative programming to work around BPF verifier limitations 
(cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates22

● The BPF verifier uses static evaluation of instruction sequences to ‘prove’ safety
● There is a limit on how many instructions the BPF verifier will evaluate: 1 million

● That is a pretty low limit, because…
● The BPF verifier has limited state saving capabilities
● Loops often need to evaluated for every possible input value
● Code after a function call return may need to be evaluated for every possible return value

● Adding in (pointless) branches can give the BPF verifier hints about value range boundaries

● But we need to be careful – no dead code allowed!
● This is also a challenge in view of program linking… resolving symbolic constants could render a 

code block dead code.

Creative programming to work around BPF verifier limitations 
(cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates23

● The BPF verifier’s static evaluation of instruction sequences is complex

● Predicting how the BPF verifier will evaluate your code is extremely difficult
● And can change depending on the kernel version

● Understanding a failure is not always enough to figure out a solution

Creative programming to work around BPF verifier limitations 
(cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates24

● Creating a large amount of kprobes (or uprobes) is pretty slow
● Removing a large amount of kprobes (or uprobes) is very slow

● 51351 probes took 58.37s!

● Problem seems to be located in the management of data structures at the kernel level

● Possible solution for removals: lazy removal
● Mark probe for removal but don’t remove it from the list
● At regular intervals, do a batch removal of “stale” probes

Tracing infrastructure performance with MANY probes



09/14/2023Copyright © 2023, Oracle and/or its affiliates25

● DTrace probe naming is expected to be ‘stable’: provider:module:function:name

● Probes in code that can be compiled as a kernel module are expected to be grouped under the 
module name

● Whether the module is compiled as a loadable module or compiled into the kernel should not affect 
the probe naming

● Patch submitted to upstream kernel: kallmodsyms
● DTrace makes extensive use of datatype information

● Depending on debuginfo is unacceptable (too large)

● CTF (Compact C Type Format) was developed for this in the early days of DTrace

● Support is now in GCC and binutils

● Patch to be submitted to upstream kernel: CTF

Features we need but do not have in upstream kernels (yet)



09/14/2023Copyright © 2023, Oracle and/or its affiliates26

● DTrace needs to be able to listen for various events using a poll interface

● Notification of available data in perf output buffers

● Notification of state changes of processes (pid)

● Existing mechanisms are not adequate

● Patch to be submitted to upstream kernel: waitfd()

Features we need but do not have in upstream kernels yet (cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates27

● Source code:

● https://github.com/oracle/dtrace-utils (dev branch)

● Mailing list:

● dtrace-devel@oss.oracle.com

Thank you!

More information…   Get involved...

https://github.com/oracle/dtrace-utils
mailto:dtrace-devel@oss.oracle.com




Our mission is to help people see data in new ways, 
discover insights, unlock endless possibilities.


	Slide 1
	Title
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

