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● DTrace for Linux started in 2010
● Between 2018 and 2020, DTrace transitioned from an invasive kernel/userspace implementation to a 

pure userspace implementation (based on kernel tracing features incl. eBPF).

● DTrace provides:

● Combined kernel space and userspace tracing

● C-style scripting language

● Higher level data structures (strings, arrays, associative arrays, aggregations)

● Scripted actions associated with probes

● Speculative tracing

● ...

Short overview of DTrace on Linux
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● DTrace provides programmable tracing:

● Code is written in clauses

● Clauses are associated with probes and act like functions, executed when the probe fires

● Predicates provide conditional clauses

● Any number of clauses can be associated with a probe

● Any number of probes can be associated with a clause

● DTrace provides dynamic tracing:

● Scripts written in D

● Can adapt to trace data

Programmable dynamic tracing



09/14/2023Copyright © 2023, Oracle and/or its affiliates5

fbt::wake_up_new_task:entry
{
    self→p = (struct task_struct *)arg0;
    euids[self→p→tgid] = self→p→cred→euid.val;
    comms[self→→tgid] = (string)self→p→name;
}

sched_process_exit
{ euids[pid] = 0; }

proc:::exit
{ comms[pid] = 0; }

execve:entry
{
    this→in_execve = 1;
    this→uid = 0;
}

D scripts are compiled into BPF programs

execve:return
{
    this→in_execve = 0;
}

path_openat:return
/this→in_execve && arg1 > 0 && arg1 < 4096/
{
    this→uid = ((struct file 
*)arg1)→f_inode→i_uid.val;
}

path_openat:return
/this→execve && arg1 && comms[ppid] != 0 &&
 this→uid != 0 && this→uid != euids[ppid]/
{
    printf(“…”);

}
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tracepoint



09/14/2023Copyright © 2023, Oracle and/or its affiliates8

fbt::wake_up_new_task:entry
{
    self→p = (struct task_struct *)arg0;
    euids[self→p→tgid] = self→p→cred→euid.val;
    comms[self→→tgid] = (string)self→p→name;
}

sched_process_exit
{ euids[pid] = 0; }

proc:::exit
{ comms[pid] = 0; }

execve:entry
{
    this→in_execve = 1;
    this→uid = 0;
}

D scripts are compiled into BPF programs

execve:return
{
    this→in_execve = 0;
}

path_openat:return
/this→in_execve && arg1 > 0 && arg1 < 4096/
{
    this→uid = ((struct file 
*)arg1)→f_inode→i_uid.val;
}

path_openat:return
/this→execve && arg1 && comms[ppid] != 0 &&
 this→uid != 0 && this→uid != euids[ppid]/
{
    printf(“…”);

}

FBT providet

FBT providet

FBT providet

tracepoint

Syscall provider

Syscall provider
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● Each clause is compiled into a BPF function
● DTrace probes are mapped to kernel-level probes:

– FBT probes are mapped to kprobes

– Syscall probes are mapped to syscall entry and return tracepoints

– Profile probes are mapped to perf timer events

– USDT and pid probes are mapped to uprobes

– SDT probes (proc, sched, lockstat, …) are mapped to any other probe
● Sometimes a single probe, sometimes multiple probes
● Sometimes multiple probes working together (e.g. one does setup, the other reports the firing)

● Common subroutines are implemented using pre-compiled BPF code

– Leveraging BPF support in GCC and binutils

D scripts are compiled into BPF programs (cont.)
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● A BPF program is generated for each kernel-level probe:

– BPF program types vary across different kernel-level probes
● BPF programs are specific to a certain program type

– DTrace considers all probes to be essentially the same
● Differences are reflected in naming (irrelevant) and probe arguments

– A single clause associated with two probes of different BPF program type requires 
two BPF programs.

– DTrace probes implemented on top of other DTrace probes need to appear to the consumer as 
distinct probes.

D scripts are compiled into BPF programs (cont.)
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● The BPF program for a specific BPF probe is generated as a trampoline:

– Exit immediately if the consumer has not started yet                                 (global on/off switch)
– Create a DTrace context:

● Populate probe arguments based on the BPF context (program type specific)
● Set up the DTrace context based on the DTrace probe information
● Set up the output buffer and other internal pointers and data structures

– Generate calls to all clause BPF functions for this kernel-level probe, checking before each call 
whether tracing is still active                                                                      (global on/off switch)

– For each (if any) (dependent) DTrace probe implemented based on this (underlying) probe:
● Save the probe arguments
● Morph the DTrace context into the dependent DTrace probe and call its clauses
● Restore the probe arguments

D scripts are compiled into BPF programs (cont.)



09/14/2023Copyright © 2023, Oracle and/or its affiliates13

● The final (loadable) BPF program is then constructed using a custom linker:

– Recursively resolve all function call references by appending the generated code for the function 
(clause BPF function or pre-compiled BPF function) to the program and patching the call target 
offset

– Resolve all symbolic references to constants that are compilation-specific

D scripts are compiled into BPF programs (cont.)
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It all sounds so easy…

D scripts are compiled into BPF programs (cont.)
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It all sounds so easy…

too easy...

D scripts are compiled into BPF programs (cont.)
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● Since 2020, DTrace based on BPF is supported as a product on various kernel releases:

● 5.4.x-based kernels

● 5.15.x-based kernels

● Most development is done on newer kernels:

● 6.1.x

● 6.5.x

● bpf-next

… and that has consequences!

The ‘joy’ of product status...
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● Kernel helpers differ between kernel versions (usually more, never less)
● BPF verifier behaviour differs between kernel helpers
● Kernel implementation of target areas for tracing change (less common)

● And there is an expectation of retaining documented behaviour

The joy of ‘product’ status… (cont.)  … and other challenges
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● bpf_probe_read() and bpf_probe_read_str() can be used for kernel and userspace addresses on most 
architectures (but not all)

● bpf_probe_read_kernel(), bpf_probe_read_user(), bpf_probe_read_kernel_str(), 
bpf_probe_read_user_str() were introduced later to resolve this

● Some kernels versions had a confusing mix of what worked and what didn’t

● bpf_get_current_task_btf() and bpf_task_pt_regs() were introduced in later kernels

● But we still need to get to task CPU registers on older kernels also

● We wrote some (semi-convoluted) BPF code to mimic the kernel code to determine the location of 
the saved userspace registers for the current task, using bpf_probe_kernel_read()s to chase pointer 
chains to get to our target.

Some BPF helpers are only available in newer kernels
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● BPF verifier is meant to guarantee safety of BPF programs being loaded into the kernel
● BPF verifier allows programs to pass that it deems safe

● But it may reject programs that are actually perfectly safe

● It is impossible to get it right all the time

● Compiler-generated code may be safe because of how the code is generated, but the BPF verifier may 
not be able to ascertain that

● DTrace provides programmable dynamic tracing, so it needs to be able to generate programs

● We strike a balance between generating efficient code and code that is constructed to ensure it can 
pass the BPF verifier.

Creative programming to work around BPF verifier limitations
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● Remember: BPF verifier implementations differ between kernel versions
● We need to be able to pass the BPF verifier on all supported kernel versions

● Sadly, this is often a process of trial and error:
● Analyze a rejection
● Find a solution
● Ensure the solution is valid on all supported kernel versions

Creative programming to work around BPF verifier limitations 
(cont.)
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● The BPF verifier uses static evaluation of instruction sequences to ‘prove’ safety
● There is a limit on how many instructions the BPF verifier will evaluate: 1 million

● That is a pretty low limit, because...

Creative programming to work around BPF verifier limitations 
(cont.)
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● The BPF verifier uses static evaluation of instruction sequences to ‘prove’ safety
● There is a limit on how many instructions the BPF verifier will evaluate: 1 million

● That is a pretty low limit, because…
● The BPF verifier has limited state saving capabilities
● Loops often need to evaluated for every possible input value
● Code after a function call return may need to be evaluated for every possible return value

● Adding in (pointless) branches can give the BPF verifier hints about value range boundaries

● But we need to be careful – no dead code allowed!
● This is also a challenge in view of program linking… resolving symbolic constants could render a 

code block dead code.

Creative programming to work around BPF verifier limitations 
(cont.)
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● The BPF verifier’s static evaluation of instruction sequences is complex

● Predicting how the BPF verifier will evaluate your code is extremely difficult
● And can change depending on the kernel version

● Understanding a failure is not always enough to figure out a solution

Creative programming to work around BPF verifier limitations 
(cont.)
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● Creating a large amount of kprobes (or uprobes) is pretty slow
● Removing a large amount of kprobes (or uprobes) is very slow

● 51351 probes took 58.37s!

● Problem seems to be located in the management of data structures at the kernel level

● Possible solution for removals: lazy removal
● Mark probe for removal but don’t remove it from the list
● At regular intervals, do a batch removal of “stale” probes

Tracing infrastructure performance with MANY probes
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● DTrace probe naming is expected to be ‘stable’: provider:module:function:name

● Probes in code that can be compiled as a kernel module are expected to be grouped under the 
module name

● Whether the module is compiled as a loadable module or compiled into the kernel should not affect 
the probe naming

● Patch submitted to upstream kernel: kallmodsyms
● DTrace makes extensive use of datatype information

● Depending on debuginfo is unacceptable (too large)

● CTF (Compact C Type Format) was developed for this in the early days of DTrace

● Support is now in GCC and binutils

● Patch to be submitted to upstream kernel: CTF

Features we need but do not have in upstream kernels (yet)
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● DTrace needs to be able to listen for various events using a poll interface

● Notification of available data in perf output buffers

● Notification of state changes of processes (pid)

● Existing mechanisms are not adequate

● Patch to be submitted to upstream kernel: waitfd()

Features we need but do not have in upstream kernels yet (cont.)
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● Source code:

● https://github.com/oracle/dtrace-utils (dev branch)

● Mailing list:

● dtrace-devel@oss.oracle.com

Thank you!

More information…   Get involved...

https://github.com/oracle/dtrace-utils
mailto:dtrace-devel@oss.oracle.com




Our mission is to help people see data in new ways, 
discover insights, unlock endless possibilities.
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