
Reliable User Space TLS
tracing with eBPF

Tracing Summit 2023
Dom Del Nano

Pixie: eBPF-based Observability for K8s

● Observability tool that provides full fidelity protocol traces between your
microservices through auto instrumentation.

● Supports many popular protocols (grpc, HTTP, mysql, etc) and can trace TLS
encrypted connections.

● TLS is widely adopted in today’s environments. Being unable to trace these
connections creates substantial blind spots

● Overview of TLS tracing and why handling User space is unavoidable
● Deep dive on Pixie’s initial form of TLS tracing and its challenges
● Discuss the latest tracing and how it handles the complex challenges more

elegantly
● Future work

Agenda

● Encryption often occurs within a user space library (OpenSSL, BoringSSL)
● Tracing user space is unavoidable for tracing TLS

TLS Tracing Introduction

sslsniff
bcc-tools

● In reality, tracing production systems comes with more challenges:
○ Different types of linking (dynamic, static)
○ Many popular libraries (OpenSSL, BoringSSL, LibreSSL, GnuTLS, etc)
○ Different ways a given library can be interfaced with

● These use cases require more than the plaintext data
○ Environments today have many microservices and their tracing data must

contain additional metadata to make it useful.

TLS Tracing Production Use Cases

6

Service
A

Socket

Socket

Socket

Service B

Service C

Socket

Socket

Socket

HTTP GET /index.html

HTTP GET /index.html

HTTP GET /index.html

● Accessing the protocol data is just part of the story
○ The network traffic must be attributed to a particular connection to make

the data usable.
○ The connection must be identified so the socket file descriptor must be

accessible

Challenges Tracing Encrypted Messages

Challenges Tracing Encrypted Messages

● Plaintext protocol tracing has easy socket fd access from syscall parameters
● Socket file descriptor is not part of the OpenSSL API and must be accessed through

another mechanism

 ssize_t send(int sockfd, const void buf, size_t len, int flags);

 int SSL_write(SSL *ssl, const void *plaintext, int num);

 typedef struct ssl_st SSL;
typedef struct bio_st BIO;

struct ssl_st {
 BIO *rbio;
 BIO *wbio;
 […]
}
struct bio_st {
 int num; <----- Stores the socket file descriptor
}

● Initial tracing used memory offsets to access the
socket fd
○ Assume stable offsets for a given OpenSSL

version.

Challenges Tracing Encrypted Messages

SSL*

Memory

SSL struct

rbio*

BIO struct

num (socket fd)

Offsets

● This created another challenge – reliably detecting the
OpenSSL version.

● Version detection initially relied on
OpenSSL_version_num function but became more
challenging as more libraries and linking options were
in scope

OpenSSL Version Detection

 ✅dlsym(handle, "OpenSSL_version_num") ❌dlsym(handle, "OpenSSL_version_num")
✅RawSymbolToFptr<T>(“OpenSSL_version_num”)

❌dlsym(handle, "OpenSSL_version_num")
❌RawSymbolToFptr<T>(“OpenSSL_version_num”)

● Standardizing socket fd access appeared too challenging once BoringSSL (static
linking) was considered

● Was this the right problem to solve? Relying on user space offsets with no stability
guarantees caused more difficult challenges.

Redesigned TLS Tracing

● OpenSSL and compatible libraries can be classified in the following ways:
○ BIO Native

■ OpenSSL manages the IO to the underlying socket. Socket is expected to
be populated on SSL struct

■ Examples: Nginx, Python
○ Custom BIO

■ OpenSSL is used for encryption exclusively. Application handles IO itself
and usually done async (with an event loop)

■ Examples: NodeJS, Envoy

BIO Native vs Custom BIO

BIO Native Deep Dive

main func Frame

handleReq
Frame

write syscall

queryDb Frame

SSL_write
Frame

Call Stack

Socket fd accessible via syscall arguments

● For BIO native applications, assume that socket syscalls will occur while
SSL_write/SSL_read are on the stack*

● This provides an opportunity to pass the socket fd from the nested syscall to user
space on the uretprobe.
○ This would have the potential to remove all reliance on user space offsets and

would avoid the ongoing maintenance of the existing tracing.

Redesigned TLS Tracing

* OpenSSL does have the ability to perform async operations via custom engines. This allows for hardware offload
(Intel QAT) and other advanced features.

https://github.com/intel/QAT_Engine

● This integrity check has identified 5 programs that violate this assumption
○ 99.3% of clusters do not see this condition. Half of which belong to the same end

users.
○ 99.9376% of total integrity checks are successful

● This implementation relies on the assumptions about the call stack
● Primary concern was if unrelated io / syscalls (different connections) occurred while the

TLS library calls are on the stack

Validating call stack assumptions

● Developed integrity checking into the TLS tracing implementation
○ If more than one syscall occurs between TLS library calls, the fd must be the same

throughout – (i.e. buffered writes)

SSL_write return probe

Redesigned TLS Tracing

main func Frame

handleReq
Frame

write syscall

queryDb Frame

SSL_write
Frame

Call Stack BPF Events

SSL_write entry probe

SSL user
space call BPF
Map

Store key (pid_tgid) value (invalid FD)

write syscall entry / return

If key exists for pid_tgid, update
value to syscall fd

If FD is no longer invalid FD,
send to perf buffer.

1.

2.

3.

TLS Tracing Coverage Review
Application Library Linking Library

Interface
Initial
Impl.

Traced w/ App.
Specific Impl.

Redesigned
Impl.

Nginx OpenSSL v1.1.0 Dynamic BIO Native ✅ N/A ✅

Nginx OpenSSL v1.1.1 Dynamic BIO Native ✅ N/A ✅

Nginx OpenSSL v3.x Dynamic BIO Native 🚧 N/A ✅

Python <= 3.9 OpenSSL v1.1.x Dynamic BIO Native ✅ N/A ✅

Python >= 3.10 OpenSSL v3.x Dynamic BIO Native 🚧 N/A ✅

Clickhouse* BoringSSL Static BIO Native ❌ N/A ✅

NodeJS OpenSSL Static Custom
BIO

❌ ✅ ❌

Netty Tcnative BoringSSL Static Custom
BIO

❌ ✅ ❌

Envoy BoringSSL Static Custom
BIO

❌ ❌ ❌

Future Work

● Better support Custom BIO use cases
○ Investigate remove implementation specific tracing.
○ Ideally this would provide broad coverage with supporting additional

applications (Envoy, Istio, etc).
● Handle statically linked cases where symbols are completely stripped.

Thank You

