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Pixie: eBPF-based Observability for K8s

● Observability tool that provides full fidelity protocol traces between your 
microservices through auto instrumentation.

● Supports many popular protocols (grpc, HTTP, mysql, etc) and can trace TLS 
encrypted connections.

● TLS is widely adopted in today’s environments. Being unable to trace these 
connections creates substantial blind spots



● Overview of TLS tracing and why handling User space is unavoidable
● Deep dive on Pixie’s initial form of TLS tracing and its challenges
● Discuss the latest tracing and how it handles the complex challenges more 

elegantly
● Future work
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● Encryption often occurs within a user space library (OpenSSL, BoringSSL)
● Tracing user space is unavoidable for tracing TLS

TLS Tracing Introduction

sslsniff
bcc-tools



● In reality, tracing production systems comes with more challenges:
○ Different types of linking (dynamic, static)
○ Many popular libraries (OpenSSL, BoringSSL, LibreSSL, GnuTLS, etc)
○ Different ways a given library can be interfaced with

● These use cases require more than the plaintext data
○ Environments today have many microservices and their tracing data must 

contain additional metadata to make it useful.

TLS Tracing Production Use Cases
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● Accessing the protocol data is just part of the story
○ The network traffic must be attributed to a particular connection to make 

the data usable.
○ The connection must be identified so the socket file descriptor must be 

accessible

Challenges Tracing Encrypted Messages



Challenges Tracing Encrypted Messages

● Plaintext protocol tracing has easy socket fd access from syscall parameters
● Socket file descriptor is not part of the OpenSSL API and must be accessed through 

another mechanism
     
      ssize_t send(int sockfd, const void buf, size_t len, int flags);

      
      int SSL_write(SSL *ssl, const void *plaintext, int num);

     typedef struct ssl_st SSL;
typedef struct bio_st BIO;

struct ssl_st {
    BIO *rbio;
    BIO *wbio;
    [ … ]
}
struct bio_st {
    int num;            <-----   Stores the socket file descriptor
}



● Initial tracing used memory offsets to access the 
socket fd
○ Assume stable offsets for a given OpenSSL 

version.

Challenges Tracing Encrypted Messages
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● This created another challenge – reliably detecting the 
OpenSSL version.

● Version detection initially relied on 
OpenSSL_version_num function but became more 
challenging as more libraries and linking options were 
in scope



OpenSSL Version Detection

 ✅dlsym(handle, "OpenSSL_version_num") ❌dlsym(handle, "OpenSSL_version_num")
✅RawSymbolToFptr<T>(“OpenSSL_version_num”)

❌dlsym(handle, "OpenSSL_version_num")
❌RawSymbolToFptr<T>(“OpenSSL_version_num”)



● Standardizing socket fd access appeared too challenging once BoringSSL (static 
linking) was considered

● Was this the right problem to solve? Relying on user space offsets with no stability 
guarantees caused more difficult challenges.

Redesigned TLS Tracing

● OpenSSL and compatible libraries can be classified in the following ways:
○ BIO Native

■ OpenSSL manages the IO to the underlying socket. Socket is expected to 
be populated on SSL struct

■ Examples: Nginx, Python
○ Custom BIO

■ OpenSSL is used for encryption exclusively. Application handles IO itself 
and usually done async (with an event loop)

■ Examples: NodeJS, Envoy



BIO Native vs Custom BIO



BIO Native Deep Dive

main func Frame
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Frame

write syscall
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SSL_write 
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Call Stack

Socket fd accessible via syscall arguments



● For BIO native applications, assume that socket syscalls will occur while 
SSL_write/SSL_read are on the stack*

● This provides an opportunity to pass the socket fd from the nested syscall to user 
space on the uretprobe.
○ This would have the potential to remove all reliance on user space offsets and 

would avoid the ongoing maintenance of the existing tracing.

Redesigned TLS Tracing

* OpenSSL does have the ability to perform async operations via custom engines. This allows for hardware offload 
(Intel QAT) and other advanced features.

https://github.com/intel/QAT_Engine


● This integrity check has identified 5 programs that violate this assumption
○ 99.3% of clusters do not see this condition. Half of which belong to the same end 

users.
○ 99.9376% of total integrity checks are successful

● This implementation relies on the assumptions about the call stack
● Primary concern was if unrelated io / syscalls (different connections) occurred while the 

TLS library calls are on the stack

Validating call stack assumptions

● Developed integrity checking into the TLS tracing implementation
○ If more than one syscall occurs between TLS library calls, the fd must be the same 

throughout – (i.e. buffered writes)



SSL_write return probe

Redesigned TLS Tracing

main func Frame
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Frame

write syscall

queryDb Frame

SSL_write 
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Call Stack BPF Events

SSL_write entry probe

SSL user 
space call BPF 
Map

Store key (pid_tgid) value (invalid FD)

write syscall entry / return

If key exists for pid_tgid, update 
value to syscall fd

If FD is no longer invalid FD, 
send to perf buffer.
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TLS Tracing Coverage Review
Application Library Linking Library

Interface
Initial 
Impl.

Traced w/ App. 
Specific Impl.

Redesigned 
Impl.

Nginx OpenSSL v1.1.0 Dynamic BIO Native ✅ N/A ✅

Nginx OpenSSL v1.1.1 Dynamic BIO Native ✅ N/A ✅

Nginx OpenSSL v3.x Dynamic BIO Native 🚧 N/A ✅

Python <= 3.9 OpenSSL v1.1.x Dynamic BIO Native ✅ N/A ✅

Python >= 3.10 OpenSSL v3.x Dynamic BIO Native 🚧 N/A ✅

Clickhouse* BoringSSL Static BIO Native ❌ N/A ✅

NodeJS OpenSSL Static Custom 
BIO

❌ ✅ ❌

Netty Tcnative BoringSSL Static Custom 
BIO

❌ ✅ ❌

Envoy BoringSSL Static Custom 
BIO

❌ ❌ ❌



Future Work

● Better support Custom BIO use cases
○ Investigate remove implementation specific tracing.
○ Ideally this would provide broad coverage with supporting additional 

applications (Envoy, Istio, etc).
● Handle statically linked cases where symbols are completely stripped.



Thank You


