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Introduction

• More than a decade of experience and problem solving

• Lots of feedback from users

• We wish to share this

• Challenges of integrating a user-space tracer in Linux ecosystem

• Apply to other tools and applications
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User-space Tracer Properties Trifecta

1 Integrity [I] of application
• Don’t crash the application
• Don’t corrupt application data
• Predictable timing impacts on Real-Time applications

2 Reliability [R] of results
• Report discarded events
• Report tracing setup complete or partial failures

3 Adaptability [A] of tracer
• Automatically adapt to the software and hardware environments
• Minimize the amount of user intervention and configuration required for tracing
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User-space Tracer Properties Trifecta (continuation)

• R + A = user distrusts the tracer; won’t deploy it

• I + A = results are doubted by the user

• I + R = increased of burden put on the user
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Memory Usage

• Problems
• Impact on application memory layout

• Observable effect only when tracing (e.g., observable double-free by application)
• Reproducibility of memory access patterns

• Quiescent state cannot be guaranteed with pthread_atfork(3)
• Endless loop in malloc(3) and free(3)
• Prevent rendez-vous point with LTTng-UST [1] listener threads

• Current solution [I]
• LD PRELOAD lttng-ust-fork.so [2]

• Future solution [A]
• Implement own memory allocator within LTTng-UST
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File Descriptor Table

• Problems
• Single-threaded applications can close all file descriptors

• Recurrent pattern in daemon

• Tracer needs to communicate with external processes via Unix sockets

1 Tracer fails to read/write to its file descriptors (EBADF)
2 Tracer reads/writes to application file descriptors (recycle of fd)

• Similar problem that prevents glibc from using io_uring(7)

• Current solution [I]
• LD PRELOAD liblttng-ust-fd.so [3]

• Wrappers for close(2), fclose(3), closefrom(2), . . .
• Prevent ”close all” behavior on tracer file descriptors

• Future solution [A]
• LTTng-UST listener threads with different file descriptor table
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Signal Handling

• Problems
• Signal number could be used by application
• Starvation of signalfd [4]

• Solution [I]
• LTTng-UST does not rely on signals for IPC (Inter Process Communication)
• LTTng-UST listener threads block all signals
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Locks

• Problems
• Deadlocks caused by lock-dependencies chain (fixed in glibc 2.24) [5]

• Between tracer and dynamic loader [6]

• Current solution [I]
• Ensure consistent locking order

• Possible solution
• Protect dynamic loader structures with RCU (Read Copy Update) or reference

counters

LTTng: The Challenges of User-Space Tracing – Olivier Dion 11/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Locks

• Problems
• Deadlocks caused by lock-dependencies chain (fixed in glibc 2.24) [5]

• Between tracer and dynamic loader [6]

• Current solution [I]
• Ensure consistent locking order

• Possible solution
• Protect dynamic loader structures with RCU (Read Copy Update) or reference

counters

LTTng: The Challenges of User-Space Tracing – Olivier Dion 11/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Locks

• Problems
• Deadlocks caused by lock-dependencies chain (fixed in glibc 2.24) [5]

• Between tracer and dynamic loader [6]

• Current solution [I]
• Ensure consistent locking order

• Possible solution
• Protect dynamic loader structures with RCU (Read Copy Update) or reference

counters

LTTng: The Challenges of User-Space Tracing – Olivier Dion 11/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Resources Management After Fork

• Problems
• Resources can be leaked in child process (if no execve(2))

• Allocated memory
• Opened file descriptors

• Current solution [I]
• LD PRELOAD liblttng-ust-fork.so [2]

• Wrappers for fork(2), clone(2), daemon(3) . . .
• Put LTTng-UST listener threads in quiescent state
• Release resources within child

• Future solution [A]
• Use pthread_atfork(3)

• Require own memory allocator
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Transparent Multi-Threading

• Problems
• Single-threaded application are not expecting other threads
• Global states (e.g., umask(2))

• Solution [I]
• LTTng-UST forks a worker process
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Asynchronous Process Termination

• Problems
• IPC over shared memory per-uid

• Must be resilient with respect to application terminations

• 3 steps protocol: reserve, write, commit
• Issues when an application is terminated between reserve and commit
• What if the application is simply stopped?

• Why not TLS-based ring buffers?
• Do not scale with frequent and short lifetime threads (customer requirement)
• Allocation and publication overheads

• Current solution [R]
• Recommend to use per-pid ring buffers

• Future solution [R, A]
• Introduce the notion of sub-buffer producer ownership

• Only a single owner by sub-buffer (between step 1 and 3) by tagging it
• Can detect stalled vs terminated owner

LTTng: The Challenges of User-Space Tracing – Olivier Dion 15/23 – efficios.com
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CPU Topology in Containers

• Problems
• Per-cpu ring buffers over allocating memory
• For example, only a subset of CPU used in container

• Current state
• Adaptative per-cpu allocation (single process)

• Based on RSEQ (Restartable SEQuence) concurrency level (mm_cid) [7]
• Not NUMA (Non-Uniform Memory Access) aware

• Future solution [A]
• Adaptative per-cpu allocation (shared memory)

• NUMA aware (RSEQ numa_mm_cid)
• RSEQ concurrency IDs for IPC namespace
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Limited I/O, CPU Time and Persistent Storage

• Problems
• Tracing when system resources are scarce

• Current solution
• Dynamic filtering
• Snapshots (flight recorder tracing)
• Triggers

• Future solution
• Trace hit counters [8]
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Structured Instrumentation in Runtimes Other than C

• Problems
• Structural tracing in runtimes other than C/C++

• Python
• Golang
• Java
• Javascript

• Future solution [A]
• Use ABI proposed by libside [9]
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https://lore.kernel.org/all/20221122203932.231377-8-mathieu.desnoyers@efficios.com/
https://lore.kernel.org/all/20221122203932.231377-8-mathieu.desnoyers@efficios.com/
https://review.lttng.org/c/lttng-ust/+/4685/32
https://github.com/efficios/libside
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