
LTTng: The Challenges of User-Space Tracing
Tracing Summit 2023

Olivier Dion

September 17, 2023



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Summary

1 Introduction

2 Shared Resource Tracer/Runtime

3 Shared Resource Tracer/External

4 Other Challenges

5 Conclusion

LTTng: The Challenges of User-Space Tracing – Olivier Dion 2/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Summary

1 Introduction

2 Shared Resource Tracer/Runtime

3 Shared Resource Tracer/External

4 Other Challenges

5 Conclusion

LTTng: The Challenges of User-Space Tracing – Olivier Dion 3/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Introduction

• More than a decade of experience and problem solving

• Lots of feedback from users

• We wish to share this

• Challenges of integrating a user-space tracer in Linux ecosystem

• Apply to other tools and applications

LTTng: The Challenges of User-Space Tracing – Olivier Dion 4/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Introduction

• More than a decade of experience and problem solving

• Lots of feedback from users

• We wish to share this

• Challenges of integrating a user-space tracer in Linux ecosystem

• Apply to other tools and applications

LTTng: The Challenges of User-Space Tracing – Olivier Dion 4/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

User-space Tracer Properties Trifecta

1 Integrity [I] of application
• Don’t crash the application
• Don’t corrupt application data
• Predictable timing impacts on Real-Time applications

2 Reliability [R] of results
• Report discarded events
• Report tracing setup complete or partial failures

3 Adaptability [A] of tracer
• Automatically adapt to the software and hardware environments
• Minimize the amount of user intervention and configuration required for tracing

LTTng: The Challenges of User-Space Tracing – Olivier Dion 5/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

User-space Tracer Properties Trifecta

1 Integrity [I] of application
• Don’t crash the application
• Don’t corrupt application data
• Predictable timing impacts on Real-Time applications

2 Reliability [R] of results
• Report discarded events
• Report tracing setup complete or partial failures

3 Adaptability [A] of tracer
• Automatically adapt to the software and hardware environments
• Minimize the amount of user intervention and configuration required for tracing

LTTng: The Challenges of User-Space Tracing – Olivier Dion 5/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

User-space Tracer Properties Trifecta

1 Integrity [I] of application
• Don’t crash the application
• Don’t corrupt application data
• Predictable timing impacts on Real-Time applications

2 Reliability [R] of results
• Report discarded events
• Report tracing setup complete or partial failures

3 Adaptability [A] of tracer
• Automatically adapt to the software and hardware environments
• Minimize the amount of user intervention and configuration required for tracing

LTTng: The Challenges of User-Space Tracing – Olivier Dion 5/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

User-space Tracer Properties Trifecta (continuation)

• R + A = user distrusts the tracer; won’t deploy it

• I + A = results are doubted by the user

• I + R = increased of burden put on the user

LTTng: The Challenges of User-Space Tracing – Olivier Dion 6/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Summary

1 Introduction

2 Shared Resource Tracer/Runtime

3 Shared Resource Tracer/External

4 Other Challenges

5 Conclusion

LTTng: The Challenges of User-Space Tracing – Olivier Dion 7/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Memory Usage

• Problems
• Impact on application memory layout

• Observable effect only when tracing (e.g., observable double-free by application)
• Reproducibility of memory access patterns

• Quiescent state cannot be guaranteed with pthread_atfork(3)
• Endless loop in malloc(3) and free(3)
• Prevent rendez-vous point with LTTng-UST [1] listener threads

• Current solution [I]
• LD PRELOAD lttng-ust-fork.so [2]

• Future solution [A]
• Implement own memory allocator within LTTng-UST

LTTng: The Challenges of User-Space Tracing – Olivier Dion 8/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Memory Usage

• Problems
• Impact on application memory layout

• Observable effect only when tracing (e.g., observable double-free by application)
• Reproducibility of memory access patterns

• Quiescent state cannot be guaranteed with pthread_atfork(3)
• Endless loop in malloc(3) and free(3)
• Prevent rendez-vous point with LTTng-UST [1] listener threads

• Current solution [I]
• LD PRELOAD lttng-ust-fork.so [2]

• Future solution [A]
• Implement own memory allocator within LTTng-UST

LTTng: The Challenges of User-Space Tracing – Olivier Dion 8/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Memory Usage

• Problems
• Impact on application memory layout

• Observable effect only when tracing (e.g., observable double-free by application)
• Reproducibility of memory access patterns

• Quiescent state cannot be guaranteed with pthread_atfork(3)
• Endless loop in malloc(3) and free(3)
• Prevent rendez-vous point with LTTng-UST [1] listener threads

• Current solution [I]
• LD PRELOAD lttng-ust-fork.so [2]

• Future solution [A]
• Implement own memory allocator within LTTng-UST

LTTng: The Challenges of User-Space Tracing – Olivier Dion 8/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Memory Usage

• Problems
• Impact on application memory layout

• Observable effect only when tracing (e.g., observable double-free by application)
• Reproducibility of memory access patterns

• Quiescent state cannot be guaranteed with pthread_atfork(3)
• Endless loop in malloc(3) and free(3)
• Prevent rendez-vous point with LTTng-UST [1] listener threads

• Current solution [I]
• LD PRELOAD lttng-ust-fork.so [2]

• Future solution [A]
• Implement own memory allocator within LTTng-UST

LTTng: The Challenges of User-Space Tracing – Olivier Dion 8/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

File Descriptor Table

• Problems
• Single-threaded applications can close all file descriptors

• Recurrent pattern in daemon

• Tracer needs to communicate with external processes via Unix sockets

1 Tracer fails to read/write to its file descriptors (EBADF)
2 Tracer reads/writes to application file descriptors (recycle of fd)

• Similar problem that prevents glibc from using io_uring(7)

• Current solution [I]
• LD PRELOAD liblttng-ust-fd.so [3]

• Wrappers for close(2), fclose(3), closefrom(2), . . .
• Prevent ”close all” behavior on tracer file descriptors

• Future solution [A]
• LTTng-UST listener threads with different file descriptor table

LTTng: The Challenges of User-Space Tracing – Olivier Dion 9/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

File Descriptor Table

• Problems
• Single-threaded applications can close all file descriptors

• Recurrent pattern in daemon

• Tracer needs to communicate with external processes via Unix sockets

1 Tracer fails to read/write to its file descriptors (EBADF)
2 Tracer reads/writes to application file descriptors (recycle of fd)

• Similar problem that prevents glibc from using io_uring(7)

• Current solution [I]
• LD PRELOAD liblttng-ust-fd.so [3]

• Wrappers for close(2), fclose(3), closefrom(2), . . .
• Prevent ”close all” behavior on tracer file descriptors

• Future solution [A]
• LTTng-UST listener threads with different file descriptor table

LTTng: The Challenges of User-Space Tracing – Olivier Dion 9/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

File Descriptor Table

• Problems
• Single-threaded applications can close all file descriptors

• Recurrent pattern in daemon

• Tracer needs to communicate with external processes via Unix sockets

1 Tracer fails to read/write to its file descriptors (EBADF)
2 Tracer reads/writes to application file descriptors (recycle of fd)

• Similar problem that prevents glibc from using io_uring(7)

• Current solution [I]
• LD PRELOAD liblttng-ust-fd.so [3]

• Wrappers for close(2), fclose(3), closefrom(2), . . .
• Prevent ”close all” behavior on tracer file descriptors

• Future solution [A]
• LTTng-UST listener threads with different file descriptor table

LTTng: The Challenges of User-Space Tracing – Olivier Dion 9/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

File Descriptor Table

• Problems
• Single-threaded applications can close all file descriptors

• Recurrent pattern in daemon

• Tracer needs to communicate with external processes via Unix sockets

1 Tracer fails to read/write to its file descriptors (EBADF)
2 Tracer reads/writes to application file descriptors (recycle of fd)

• Similar problem that prevents glibc from using io_uring(7)

• Current solution [I]
• LD PRELOAD liblttng-ust-fd.so [3]

• Wrappers for close(2), fclose(3), closefrom(2), . . .
• Prevent ”close all” behavior on tracer file descriptors

• Future solution [A]
• LTTng-UST listener threads with different file descriptor table

LTTng: The Challenges of User-Space Tracing – Olivier Dion 9/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

File Descriptor Table

• Problems
• Single-threaded applications can close all file descriptors

• Recurrent pattern in daemon

• Tracer needs to communicate with external processes via Unix sockets

1 Tracer fails to read/write to its file descriptors (EBADF)
2 Tracer reads/writes to application file descriptors (recycle of fd)

• Similar problem that prevents glibc from using io_uring(7)

• Current solution [I]
• LD PRELOAD liblttng-ust-fd.so [3]

• Wrappers for close(2), fclose(3), closefrom(2), . . .
• Prevent ”close all” behavior on tracer file descriptors

• Future solution [A]
• LTTng-UST listener threads with different file descriptor table

LTTng: The Challenges of User-Space Tracing – Olivier Dion 9/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Signal Handling

• Problems
• Signal number could be used by application
• Starvation of signalfd [4]

• Solution [I]
• LTTng-UST does not rely on signals for IPC (Inter Process Communication)
• LTTng-UST listener threads block all signals

LTTng: The Challenges of User-Space Tracing – Olivier Dion 10/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Signal Handling

• Problems
• Signal number could be used by application
• Starvation of signalfd [4]

• Solution [I]
• LTTng-UST does not rely on signals for IPC (Inter Process Communication)
• LTTng-UST listener threads block all signals

LTTng: The Challenges of User-Space Tracing – Olivier Dion 10/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Locks

• Problems
• Deadlocks caused by lock-dependencies chain (fixed in glibc 2.24) [5]

• Between tracer and dynamic loader [6]

• Current solution [I]
• Ensure consistent locking order

• Possible solution
• Protect dynamic loader structures with RCU (Read Copy Update) or reference

counters

LTTng: The Challenges of User-Space Tracing – Olivier Dion 11/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Locks

• Problems
• Deadlocks caused by lock-dependencies chain (fixed in glibc 2.24) [5]

• Between tracer and dynamic loader [6]

• Current solution [I]
• Ensure consistent locking order

• Possible solution
• Protect dynamic loader structures with RCU (Read Copy Update) or reference

counters

LTTng: The Challenges of User-Space Tracing – Olivier Dion 11/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Locks

• Problems
• Deadlocks caused by lock-dependencies chain (fixed in glibc 2.24) [5]

• Between tracer and dynamic loader [6]

• Current solution [I]
• Ensure consistent locking order

• Possible solution
• Protect dynamic loader structures with RCU (Read Copy Update) or reference

counters

LTTng: The Challenges of User-Space Tracing – Olivier Dion 11/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Resources Management After Fork

• Problems
• Resources can be leaked in child process (if no execve(2))

• Allocated memory
• Opened file descriptors

• Current solution [I]
• LD PRELOAD liblttng-ust-fork.so [2]

• Wrappers for fork(2), clone(2), daemon(3) . . .
• Put LTTng-UST listener threads in quiescent state
• Release resources within child

• Future solution [A]
• Use pthread_atfork(3)

• Require own memory allocator

LTTng: The Challenges of User-Space Tracing – Olivier Dion 12/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Resources Management After Fork

• Problems
• Resources can be leaked in child process (if no execve(2))

• Allocated memory
• Opened file descriptors

• Current solution [I]
• LD PRELOAD liblttng-ust-fork.so [2]

• Wrappers for fork(2), clone(2), daemon(3) . . .
• Put LTTng-UST listener threads in quiescent state
• Release resources within child

• Future solution [A]
• Use pthread_atfork(3)

• Require own memory allocator

LTTng: The Challenges of User-Space Tracing – Olivier Dion 12/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Resources Management After Fork

• Problems
• Resources can be leaked in child process (if no execve(2))

• Allocated memory
• Opened file descriptors

• Current solution [I]
• LD PRELOAD liblttng-ust-fork.so [2]

• Wrappers for fork(2), clone(2), daemon(3) . . .
• Put LTTng-UST listener threads in quiescent state
• Release resources within child

• Future solution [A]
• Use pthread_atfork(3)

• Require own memory allocator

LTTng: The Challenges of User-Space Tracing – Olivier Dion 12/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Transparent Multi-Threading

• Problems
• Single-threaded application are not expecting other threads
• Global states (e.g., umask(2))

• Solution [I]
• LTTng-UST forks a worker process

LTTng: The Challenges of User-Space Tracing – Olivier Dion 13/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Transparent Multi-Threading

• Problems
• Single-threaded application are not expecting other threads
• Global states (e.g., umask(2))

• Solution [I]
• LTTng-UST forks a worker process

LTTng: The Challenges of User-Space Tracing – Olivier Dion 13/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Summary

1 Introduction

2 Shared Resource Tracer/Runtime

3 Shared Resource Tracer/External

4 Other Challenges

5 Conclusion

LTTng: The Challenges of User-Space Tracing – Olivier Dion 14/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Asynchronous Process Termination

• Problems
• IPC over shared memory per-uid

• Must be resilient with respect to application terminations

• 3 steps protocol: reserve, write, commit
• Issues when an application is terminated between reserve and commit
• What if the application is simply stopped?

• Why not TLS-based ring buffers?
• Do not scale with frequent and short lifetime threads (customer requirement)
• Allocation and publication overheads

• Current solution [R]
• Recommend to use per-pid ring buffers

• Future solution [R, A]
• Introduce the notion of sub-buffer producer ownership

• Only a single owner by sub-buffer (between step 1 and 3) by tagging it
• Can detect stalled vs terminated owner

LTTng: The Challenges of User-Space Tracing – Olivier Dion 15/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Asynchronous Process Termination

• Problems
• IPC over shared memory per-uid

• Must be resilient with respect to application terminations

• 3 steps protocol: reserve, write, commit
• Issues when an application is terminated between reserve and commit
• What if the application is simply stopped?

• Why not TLS-based ring buffers?
• Do not scale with frequent and short lifetime threads (customer requirement)
• Allocation and publication overheads

• Current solution [R]
• Recommend to use per-pid ring buffers

• Future solution [R, A]
• Introduce the notion of sub-buffer producer ownership

• Only a single owner by sub-buffer (between step 1 and 3) by tagging it
• Can detect stalled vs terminated owner

LTTng: The Challenges of User-Space Tracing – Olivier Dion 15/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Asynchronous Process Termination

• Problems
• IPC over shared memory per-uid

• Must be resilient with respect to application terminations

• 3 steps protocol: reserve, write, commit
• Issues when an application is terminated between reserve and commit
• What if the application is simply stopped?

• Why not TLS-based ring buffers?
• Do not scale with frequent and short lifetime threads (customer requirement)
• Allocation and publication overheads

• Current solution [R]
• Recommend to use per-pid ring buffers

• Future solution [R, A]
• Introduce the notion of sub-buffer producer ownership

• Only a single owner by sub-buffer (between step 1 and 3) by tagging it
• Can detect stalled vs terminated owner

LTTng: The Challenges of User-Space Tracing – Olivier Dion 15/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Asynchronous Process Termination

• Problems
• IPC over shared memory per-uid

• Must be resilient with respect to application terminations

• 3 steps protocol: reserve, write, commit
• Issues when an application is terminated between reserve and commit
• What if the application is simply stopped?

• Why not TLS-based ring buffers?
• Do not scale with frequent and short lifetime threads (customer requirement)
• Allocation and publication overheads

• Current solution [R]
• Recommend to use per-pid ring buffers

• Future solution [R, A]
• Introduce the notion of sub-buffer producer ownership

• Only a single owner by sub-buffer (between step 1 and 3) by tagging it
• Can detect stalled vs terminated owner

LTTng: The Challenges of User-Space Tracing – Olivier Dion 15/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Asynchronous Process Termination

• Problems
• IPC over shared memory per-uid

• Must be resilient with respect to application terminations

• 3 steps protocol: reserve, write, commit
• Issues when an application is terminated between reserve and commit
• What if the application is simply stopped?

• Why not TLS-based ring buffers?
• Do not scale with frequent and short lifetime threads (customer requirement)
• Allocation and publication overheads

• Current solution [R]
• Recommend to use per-pid ring buffers

• Future solution [R, A]
• Introduce the notion of sub-buffer producer ownership

• Only a single owner by sub-buffer (between step 1 and 3) by tagging it
• Can detect stalled vs terminated owner

LTTng: The Challenges of User-Space Tracing – Olivier Dion 15/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Summary

1 Introduction

2 Shared Resource Tracer/Runtime

3 Shared Resource Tracer/External

4 Other Challenges

5 Conclusion

LTTng: The Challenges of User-Space Tracing – Olivier Dion 16/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

CPU Topology in Containers

• Problems
• Per-cpu ring buffers over allocating memory
• For example, only a subset of CPU used in container

• Current state
• Adaptative per-cpu allocation (single process)

• Based on RSEQ (Restartable SEQuence) concurrency level (mm_cid) [7]
• Not NUMA (Non-Uniform Memory Access) aware

• Future solution [A]
• Adaptative per-cpu allocation (shared memory)

• NUMA aware (RSEQ numa_mm_cid)
• RSEQ concurrency IDs for IPC namespace

LTTng: The Challenges of User-Space Tracing – Olivier Dion 17/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

CPU Topology in Containers

• Problems
• Per-cpu ring buffers over allocating memory
• For example, only a subset of CPU used in container

• Current state
• Adaptative per-cpu allocation (single process)

• Based on RSEQ (Restartable SEQuence) concurrency level (mm_cid) [7]
• Not NUMA (Non-Uniform Memory Access) aware

• Future solution [A]
• Adaptative per-cpu allocation (shared memory)

• NUMA aware (RSEQ numa_mm_cid)
• RSEQ concurrency IDs for IPC namespace

LTTng: The Challenges of User-Space Tracing – Olivier Dion 17/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

CPU Topology in Containers

• Problems
• Per-cpu ring buffers over allocating memory
• For example, only a subset of CPU used in container

• Current state
• Adaptative per-cpu allocation (single process)

• Based on RSEQ (Restartable SEQuence) concurrency level (mm_cid) [7]
• Not NUMA (Non-Uniform Memory Access) aware

• Future solution [A]
• Adaptative per-cpu allocation (shared memory)

• NUMA aware (RSEQ numa_mm_cid)
• RSEQ concurrency IDs for IPC namespace

LTTng: The Challenges of User-Space Tracing – Olivier Dion 17/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Limited I/O, CPU Time and Persistent Storage

• Problems
• Tracing when system resources are scarce

• Current solution
• Dynamic filtering
• Snapshots (flight recorder tracing)
• Triggers

• Future solution
• Trace hit counters [8]

LTTng: The Challenges of User-Space Tracing – Olivier Dion 18/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Limited I/O, CPU Time and Persistent Storage

• Problems
• Tracing when system resources are scarce

• Current solution
• Dynamic filtering
• Snapshots (flight recorder tracing)
• Triggers

• Future solution
• Trace hit counters [8]

LTTng: The Challenges of User-Space Tracing – Olivier Dion 18/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Limited I/O, CPU Time and Persistent Storage

• Problems
• Tracing when system resources are scarce

• Current solution
• Dynamic filtering
• Snapshots (flight recorder tracing)
• Triggers

• Future solution
• Trace hit counters [8]

LTTng: The Challenges of User-Space Tracing – Olivier Dion 18/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Structured Instrumentation in Runtimes Other than C

• Problems
• Structural tracing in runtimes other than C/C++

• Python
• Golang
• Java
• Javascript

• Future solution [A]
• Use ABI proposed by libside [9]

LTTng: The Challenges of User-Space Tracing – Olivier Dion 19/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Structured Instrumentation in Runtimes Other than C

• Problems
• Structural tracing in runtimes other than C/C++

• Python
• Golang
• Java
• Javascript

• Future solution [A]
• Use ABI proposed by libside [9]

LTTng: The Challenges of User-Space Tracing – Olivier Dion 19/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Summary

1 Introduction

2 Shared Resource Tracer/Runtime

3 Shared Resource Tracer/External

4 Other Challenges

5 Conclusion

LTTng: The Challenges of User-Space Tracing – Olivier Dion 20/23 – efficios.com



Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

References I

[1] EfficiOS, “Lttng-ust listener threads quiescent state,” 2020, https://github.com/
lttng/lttng-ust/blob/master/src/lib/lttng-ust-common/lttng-ust-urcu.c#L661.

[2] ——, “liblttng,” 2023,
https://github.com/lttng/lttng-ust/blob/master/src/lib/lttng-ust-fork/ustfork.c.

[3] ——, “liblttng-ust-fd,” 2023, https:
//github.com/lttng/lttng-ust/blob/master/src/lib/lttng-ust-fd/lttng-ust-fd.c.

[4] ——, “Userspace rcu release announcement,” 2023, https:
//lore.kernel.org/lttng-dev/52cf1b10-3dd0-fc20-3cb5-9cbf1f4b72bd@efficios.com.

[5] F. Weimer, “malloc: Run fork handler as late as possible,” 2016,
https://inbox.sourceware.org/libc-alpha/570D4944.7070501@redhat.com/T/.

LTTng: The Challenges of User-Space Tracing – Olivier Dion 21/23 – efficios.com

https://github.com/lttng/lttng-ust/blob/master/src/lib/lttng-ust-common/lttng-ust-urcu.c#L661
https://github.com/lttng/lttng-ust/blob/master/src/lib/lttng-ust-common/lttng-ust-urcu.c#L661
https://github.com/lttng/lttng-ust/blob/master/src/lib/lttng-ust-fork/ustfork.c
https://github.com/lttng/lttng-ust/blob/master/src/lib/lttng-ust-fd/lttng-ust-fd.c
https://github.com/lttng/lttng-ust/blob/master/src/lib/lttng-ust-fd/lttng-ust-fd.c
https://lore.kernel.org/lttng-dev/52cf1b10-3dd0-fc20-3cb5-9cbf1f4b72bd@efficios.com
https://lore.kernel.org/lttng-dev/52cf1b10-3dd0-fc20-3cb5-9cbf1f4b72bd@efficios.com
https://inbox.sourceware.org/libc-alpha/570D4944.7070501@redhat.com/T/


Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

References II

[6] EfficiOS, “baddr statedump: hold ust lock around allocations,” 2015,
https://bugs.lttng.org/projects/lttng-ust/repository/lttng-ust/revisions/
d34e6761379227cfd49abb6eab184e1e254ee0b2/diff/liblttng-ust/
lttng-ust-statedump.c.

[7] M. Desnoyers, “sched: Introduce per-memory-map concurrency id,” 2022, https:
//lore.kernel.org/all/20221122203932.231377-8-mathieu.desnoyers@efficios.com/.

[8] EfficiOS, “Lttng-ust trace hit counter,” 2023,
https://review.lttng.org/c/lttng-ust/+/4685/32.

[9] ——, “Libside,” 2023, https://github.com/efficios/libside.

LTTng: The Challenges of User-Space Tracing – Olivier Dion 22/23 – efficios.com

https://bugs.lttng.org/projects/lttng-ust/repository/lttng-ust/revisions/d34e6761379227cfd49abb6eab184e1e254ee0b2/diff/liblttng-ust/lttng-ust-statedump.c
https://bugs.lttng.org/projects/lttng-ust/repository/lttng-ust/revisions/d34e6761379227cfd49abb6eab184e1e254ee0b2/diff/liblttng-ust/lttng-ust-statedump.c
https://bugs.lttng.org/projects/lttng-ust/repository/lttng-ust/revisions/d34e6761379227cfd49abb6eab184e1e254ee0b2/diff/liblttng-ust/lttng-ust-statedump.c
https://lore.kernel.org/all/20221122203932.231377-8-mathieu.desnoyers@efficios.com/
https://lore.kernel.org/all/20221122203932.231377-8-mathieu.desnoyers@efficios.com/
https://review.lttng.org/c/lttng-ust/+/4685/32
https://github.com/efficios/libside


Introduction Shared Resource Tracer/Runtime Shared Resource Tracer/External Other Challenges Conclusion

Questions

Questions?

LTTng: The Challenges of User-Space Tracing – Olivier Dion 23/23 – efficios.com


	Introduction
	Shared Resource Tracer/Runtime
	Shared Resource Tracer/External
	Other Challenges
	Conclusion

